Transactional memory

Master in computer science of IP Paris
Master CHPS of Paris Saclay

Gaéel Thomas

Limitation of lock-based algorithms

B Large critical section hampers performance

B Problems with fine-grain locking schemes or lock-free algorithms

Makes the code complex and hard to maintain

Makes the code difficult to reuse (invariant are often only in the mind of
the initial developer, locks have to be taken in a given order)

Bugs are hard to find

Code is not composable (one data structure => one algorithm)

Makes de code difficult to prove

B Idea of transactional memory (TM)

Offers a high-level API that simplifies development
Tries to be as efficient as lock-free algorithms

TUT
S []
&’ Py
o
(4 c
m <
<
3 0’:’
e, 8
§ 3po)

Multicore Programming Transactional memory

Transactional memory: principle

B Asingle universal construct: the atomic block
» Ablock of code that appears to be executed instantaneously

a. atomic { f. atomic {

b. tmp=x; g. tmp=x;

c. tmp=tmp+I; h. tmp=tmp * 2;
d. x=tmp; 1. x=tmp;

e. } i- 3}

Two possible schedulings:
[b,c,e] then [g,h,i] (= 44) or [g,h,i] then [b,c,e] (= 43)

B Advantages
« Simplifies the code: we don’t have to know which locks we have to take

(and in which order we have to take the locks) to access a variable
» Avoids many bugs (deadlocks, starvation)

3 Multicore Programming Transactional memory

From locks to TM

B At high-level

« Transform each critical section by an atomic block
 Remove the underlying locks

synchronized(o) atomic {
1f(!1x) { 1f(!1x) {
X = true; X = true;
doSomething(); doSomething();
h h
} }

4 Multicore Programming Transactional memory

From condition variablesto TM

We often use locks with variable conditions to wait for an event

Transactional memory provides a notion of retry [Harris’093]
« Wait until a read variable is modified

synchronized(o) { synchronized(o) {
while(!x) X = true;
o.wait() o.notify();
b b

atomic { atomic {
while(!x) X = true;
retry; }

commit. x modified

2
= wake up the waiters
Waits with rew

Multicore Programming Transactional memory

Composability

If A and B are two atomic blocks, we can easily compose them

Example: a queue

atomic move(Queue dst, Queue src) {
Elmt e = src.deq();

» atomic Elmt deq()

dst.enq(e); > atomic void enq(Elmt ¢);
move

de en | :

Z Z ! lime
—— -

’ \ atomic
atomic ?
eng time
6 Multicore Programming Transactional memory

Composability and retry (1/2)

A queue implementation with retry

class Queue {
LinkedList<Elmt> queue;

h

void enq(Elmt e) §{ ih Elmt deq() §
atomic { Wake ¥P ction atomic {

a
if(queue.size() == MAX_SIZE) ;qiting ran® if(queue.empty())
retry; Wait until one of retry;
queue.addLast() return queue.removelast()

the read variable
} is modified and }
) restart
the transaction

7 Multicore Programming Transactional memory %!’j

Composability and retry (2/2)

Retry is also composable: retry restarts from the outer transaction

Retry

,//R@try
atomic move(Queue dst, Queue src) {

Elmt e = src.deq(); » atomic Elmt deq()
dst.enq(e); > atomic void enq(Elmt e);

h

time
>

\

time
>

Restart
atomic

8 Multicore Programming Transactional memory

Composability by alternative

Problem: how to reuse a blocking queue to implement a non-blocking
one

Solution: the orElse construct

EImt degNoWait() {
atomic { Execute first block
return deq(); In case of retry
} orElse { Continue with the orElse block
return null; If retry again, continue with next orElse
block or restart from the beginning
}

9 Multicore Programming Transactional memory

Design of a TM runtime

B Pessimistic solution: use a single lock
« Acquire the lock when the atomic block starts
» Release the lock when the atomic blocks ends
« => often especially inefficient!

B Optimistic solution: abort in case of conflict
« Execute an atomic block without taking a lock, as a transaction in DB
* |n case of conflict, abort the transaction

B But, whatis a conflict?
» A conflict appears when a transaction cannot execute atomically
— another transaction Y can observe an ephemeral state that only
exists inside a transaction X
— One of the variable read by a transaction X is modified by another
transaction Y during the execution of X

.?o\.YTEC 3

D0

10 Multicore Programming Transactional memory oy #3’
E

Read-write conflict

B Read-write conflicts
« Let XandY be two transactions and A a variable
* Double write with a reader
— Xwritesbin Aand thencin A
— Y reads b from A, while b would never have existed if X had
executed atomically
* Double read with a writer
— X writes b in A (writer)
— Y reads a from A and then b from A, which means that Y didn’t
execute atomically (X is executed “during” Y, which is impossible if
Y is atomic)

B In case of conflict, we can/have to abort the reader, the writer or both

O
- - W
11 Multicore Programming Transactional memory £ #3’

Two main possible designs

B Deferred update (redo log)
X writes in a redo log
» |f X commits, applis the redo log to main memory
« =>more work in case of commit
e => avoids by design the double write conflict, we only have to handle
double read conflict (read twice a variable modified by another
transaction)

B Immediate (undo log)
« X writes in main memory and in an undo log
« |If X aborts, undo the operations recorded in the undo log
« =>more work in case of abort
« => subject to both double write conflicts and double read conflicts

Ay
12 Multicore Programming Transactional memory) #3’

Deferred-update TM

Efficient if many aborts

a. atomic { f. atomic {
b. tmp=x; g. tmp=x;
c. tmp=tmp+1; h. tmp=tmp * 2;
d. x=tmp; 1. x=tmp;
e. } i- }
Memory
x =20
tmp = 20 /\
=2
abort() tmp = 20
commit() tmp = 40
Memory
tmp = 21 x = 40 Read set = { x }
Read set = { x } <- =~ “Conflictt ~~ Write set = { x /
Play the log at commit in case of commit
13 Multicore Programming Transactional memory D) q“’

Immediate TM

Efficient if many commits

x =3,y =20,2z=30

a. atomic { f. atomic {
b z=y+7 ——— x=3, y=20,2=27
Read set={y}
y=x*2;

x=3,y=6,2=27 — &5
Write set ={y }

abort()
T x=3,y=6,2=30

h.)
c. }
Note: the undo log is not represented
14 Multicore Programming Transactional memory D) q"

Conflict detection

Two possible solutions:

Eager. abort as soon as the runtime detects a conflict
Code instrumentation for each read and each write

Lazy: check the conflict only at the end of the transaction
Avoid instrumenting all the reads or all the writes

Possible inconsistency if a transaction continues to run with invalid values
(typically in case of double read conflicts)

TUT
S []
&’ P
o
4 c
m <
<
3 0’:
s, 8
§ 3po)

15 Multicore Programming Transactional memory

Implementation techniques

* Hardware transactional memory (HTM)
Use the processor cache to build a deferred-update TM

Often use a lazy detection mechanism (explicit instruction to check the
conflicts)

+ very efficient
- size limited to the cache => inadequate for large transactions

» Software transactional memory (STM)
Code instrumentation injected by a compiler
- slower + can handle any size

» Hybrid Transactional memory (HyTM)
In hardware if possible and switches to software otherwise

TUT
S []
\9’ Py
o
4 c
m <
<
3 0’4’
s, 8
§ 3po)

16 Multicore Programming Transactional memory

Naive algorithm

Deferred-update and pure lazy STM with a lock during commit

Principle :
» Associate a counter to each memory cell Memory Counter
* Read: record the counter in a local memory Cell
* Write: write in a local memory 4 17
At the end of the transaction £ I
— Ensure that the counters are not modified c 2
— In case of commit (counter not modified) d 26
* increments the counter in main memory S 83

« propagates the values in main memory
— In case of abort (counter modified)
» Simply ignores the local memory

17 Multicore Programming Transactional memory

Naive algorithm

Memory Local log

a 10 17 a

" o T n a. atomic {
b. a=a+b;

C 7 2 C c. c=a-eg¢;

d | 83 | 26 d d. b=
e. }

e 8 83 e

Value
Name Counter
18 Multicore Programming Transactional memory o q"

19

Naive algorithm

Memory
a 10 17
b 21 13
C 7 2
d 83 | 26
e 8 83
Value
Name Counter

Local log
a 31 17
b 13
C
d
e

Multicore Programming

b. a=a+b;

Transactional memory

Naive algorithm

Memory Local log

a 10 17 a 17

b 21 13 b

C 7 2 C 23 c. c=a-g¢
d 83 | 26 d

e 8 83 e 83

Value
Name Counter
Multicore Programming Transactional memory D4

21

Naive algorithm

Memory
a 10 17
b 21 13
C 7 2
d 83 | 26
e 8 83
Value
Name Counter

Local log
a
b 23 13
C
d
e

Multicore Programming

Transactional memory

22

Memory
a 10 17
b 21 13
C 7 2
d 83 | 26
e 8 83
Value
Name Counter

a 31 18
b 23 | 14
C 23 3
d

e

Naive algorithm

Local log
a 31 17
b 23 13
C 23
d
e 83

Memory state after commit

Multicore Programming

Transactional memory

Issue: zombie transactions

a. atomic {)
b, if(x !=null) ¢. atomic {
.. %.£0): f. x=null;
d.) g |

X ref 17

23 Multicore Programming Transactional memory

Issue: zombie transactions

a. atomic {
b. if(x !=null)

X ref 17

24 Multicore Programming Transactional memory

25

Issue: zombie transactions

ref

17

17

Multicore Programming

e. atomic {
f. x=null;

X null

Transactional memory

26

Issue: zombie transactions

17

g |
ref 17
W
C‘(ﬁv X null
null | 18 ¢

Multicore Programming

Transactional memory

Issue: zombie transactions

X ref | 17
a, b | x 17
%
X |[null | 18
27 Multicore Programming

X null

Transactional memory

Issue: zombie transactions

c. xA0;

a, b X 17
CO”JZr'c ,
X null

c.: NullPointerException

Problem: the transaction does not read x again!

28 Multicore Programming Transactional memory

Issue: zombie transactions

c. xA0;

a, b X 17
X null

c.: NullPointerException

Naive solution: read again the x counter at line ¢ and abort

29 Multicore Programming Transactional memory

Issue: another zombie transaction

30

© oo o

Initially: x =4,y =35

atomic {

tl =x;

t2=y;

p = 1/(t1-t2) 17
} 83

f. atomic {

g. x=217;

h. y=4;
i. }

Reading the counter at each read is not enough
Let suppose the invariant x I=y

Multicore Programming

Transactional memory

'u

Issue: another zombie transaction

Initially: x =4,y =5
a. atomic { Ay X =y

b. tl=x;

ab: tl =4 x 17

Reading the counter at each read is not enough

Let suppose the invariant x I=y
31 Multicore Programming Transactional memory "

Issue: another zombie transaction

Initially: x =4,y =35
ARy % Y f. atomic {

g. x=217;
h. y=4;
X 4 17
y 5 83
ab: tl =4 x 17
X 217
fgh
y 4

Reading the counter at each read is not enough

Let suppose the invariant x I=y
Multicore Programming Transactional memory "

33

Issue: another zombie transaction

ab:tl =4

Initially: x =4,y =35

4 17
5 83
17
217 | 18
4 84

S| x| 217
&

fgh

Reading the counter at each read is not enough

Let suppose the invariant x =y

Multicore Programming

Transactional memory

'.ﬁ

34

Issue: another zombie transaction

ab:tl =4

Initially: x =4,y =35

4 17
5 83
17
7
'?/?,'C,l
217 | 18
4 84

X 217

Transactional memory

Reading the counter at each read is not enough
Let suppose the invariant x I=y

Multicore Programming

'u

Issue: another zombie transaction

Initially: x =4,y =35

c. t2=y;
d. p=1/tl-t2) x | 4 | 17
y 5 83
ab: tl =4 x 17
Co
2,7,
Y%, x | 217 fah
y 4
x | 217 | 18
i
c:tl =4, Y 4 84
12 =4 y 84

Problem: we cannot see that y was modified after the beginning of the transaction

Crash because tl -t2 = ()
Reading the counter at each read is not enough

Let suppose the invariant x I=y
35 Multicore Programming Transactional memory "

Complete algorithm

Solution to avoid zombie transactions: a global clock
At each time, the counter of a variable has to be lower than the global clock

= ensures that the variable was not modified after the beginning of the transaction

36 Multicore Programming Transactional memory

Full implementation

Start transaction
» Copy the global clock in a local clock

For each read
» Abort if the counter of the variable is greater or equal than the local clock
« Adds the variable to the read set otherwise

For each write
 Add the variable and its value in the write set

End transaction:
* |If exists var in read set >=local clock, abort
» For each var in write set, update its value and its counter (to current global clock)
* Increment global clock

e‘ g
37 Multicore Programming Transactional memory oy #3’
E

Full implementation

38

e 0 O

atomic {

b

tl =x;
2=y
p=1/(t1-t2)

Multicore Programming

f. atomic {

g x=217;
h. y=4;
i. }

Transactional memory

39

Full implementation

Multicore Programming

f. atomic {

Transactional memory

40

Full implementation

Other

transactions in //

17

4
5

83

Multicore Programming

Transactional memory

41

Full implementation

a. atomic {

Other

transactions in //

17

4
5

83

Multicore Programming

Transactional memory

42

Full implementation

b:

t1

tl =x;

Other

transactions in //

17

4
5

83

Multicore Programming

Transactional memory

43

Full implementation

b:

t1

Other

transactions in //

17

4
5

83

Multicore Programming

g. x=217;
h. y=4;

X 217

Transactional memory

44

Full implementation

b:

t1

Other

transactions in //

17

83

217

100

100

Multicore Programming

i.

}

217

Transactional memory

Full implementation

c. t2=y;

a 100

b:tl =4 X

c: conflict!

45 Multicore Programming

Other

transactions in //

17

83

217

217

100

100

e

Transactional memory

Implementation

 Memory is an array of pointers to (value, counter)

« Atomically update a pointer to a new (value, counter), but never modify a
the value or the counter in an existing (value, counter)

« Don’t try to free a (value, counter): we need a garbage collector because
we can not easily know if a (value, counter) is not still used by another

thread

TUT
S []
S’ Py
o
(4 c
m <
<
3 0’:’
e, 8
§ 3po)

46 Multicore Programming Transactional memory

47

Implementation

class Value {

class Memory {
int value;

static Value wvalues]|[];
int counter; static int clock;

Multicore Programming

class TX {
HashSet<int> readSet;
HashMap<int, int> writeSet;
int

clock;

TU
S\UT o

Transactional memory

OLYTER
Q
>

(4
§ 3po)

<
’ bg o®

Implementation

class Value { class Memory { class TX {
int walue; static Value values|[]; HashSet<int> readSet;
int counter; static 1nt clock; HashMap<int, int> writeSet;
} } int clock;
}
void TX.begin() { Start a transaction: copy the
clock = Memory.clock; global clock
readSet = new HashSet ()

writeSet = new HashMap()

:' Ok
48 Multicore Programming Transactional memory Ty [&

Implementation

class Value { class Memory { class TX {
int value; static Value values|[]; HashSet<int> readSet;
int counter; static 1nt clock; HashMap<int, int> writeSet;
} } int clock;

void TX.write(int idx, int value) { Deferredupdate: write
writeSet.put (idx, value); in a local variable

1508
49 Multicore Programming Transactional memory £ ’e"

Implementation

class Value { class Memory { class TX {
int value; static Value values|[]; HashSet<int> readSet;
int counter; static 1nt clock; HashMap<int, int> writeSet;
} } int clock;

int TX.read(int idx) {
if (writeSet.contains (idx)) If a local write exists, use it

return writeSet.get (idx) ;

Value value = Memory.values[idx];

if (value.counter >=

clock)
abort () ; \ Abort of value was modified by

another transaction
readSet.add (idx) ;

return value.value;

] SO
50 Multicore Programming Transactional memory B/ A

Implementation

class Value { class Memory { class TX {
int value; static Value values|[]; HashSet<int> readSet;
int counter; static 1nt clock; HashMap<int, int> writeSet;
} } int clock;

void TX.commit () {
synchronized (Memory.values) { // Take a lock during a commit
for (int idx : readSet) Reader/writer conflict?
1f (Memory.values [idx] .counter >= clock) abort();

// ok, commit!

. Record the written
for (Map<int, Value> entry : writeSet.entrySet()) {

Value v = new Value (entry.getValue (), Memory.clock) ; values
Memory.values [entry.getKey ()] = v; and updates the
} counters

Memory.clock++;

: For each transaction that begin after

this line, the writes are consistent
(counter < clock)

:' Ok
o1 Multicore Programming Transactional memory D) [A

Implementation

Problem:
Two transactions abort each other
Restart = they will probably abort each other

Solution:
 Introduce a random dalay that increases exponentially (backoff)

int backoff (int n) {
Thread.sleep (1+ (int) (n*Math.random())) ;
return n < 512 ? n<<1l : n;

}

void doTransaction () {
n = 16;
try { tx.begin(); ..; tx.commit() ; }
catch (TXAbort e) { n = backoff(n); doTransaction () ; }
}
52 Multicore Programming Transactional memory D) q"

Transaction and Input/Output

atomic {
if(x > 42)
launchMissile () ;

}

Aborting an input/output is not always possible

Solution:
* Ensures that the transaction can still commit before the /O
* Marks the transaction as unabortable
= Complexify the code

33 Multicore Programming Transactional memory

TUT
S []
S’ Py
o
(4 c
m <
<
3 0’?
e, 8
§ 3po)

To take away

Transactional memory simplifies the development of concurrent
applications

* No deadlock, no starvation
« Composability (inner transactions, retry, orElse)

Implementation is difficult: performance are far from perfect
« STM: less efficient than fine grain locking schemes [Rossback07]
« HTM: only for corner case where the transaction fits in the L1 cache
« HyTM: switching from HTM to STM is costly

Performance evaluation:

100 threads increment 10’000 times a counter on a 2-core
* 3,0s in STM without backoff, 0, 48s in STM with backoff, 0,19s with a
lock)

ANOE
- - - N
o4 Multicore Programming Transactional memory D) #\"

