
Object-oriented programming in C++ From the source to the execution

From the source to the execution

Bachelor of Science - École polytechnique

gael.thomas@inria.fr

1

Object-oriented programming in C++ From the source to the execution

Key concepts

2

◼ First language constructs

◼ Compilation and execution of a program

Object-oriented programming in C++ From the source to the execution

I. My first program

3

Object-oriented programming in C++ From the source to the execution

My first program

4

header of the program

the line with “main”
indicates where the

program starts
the instructions of the program

goes between braces

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Object-oriented programming in C++ From the source to the execution

My first program

5

print "Hello, world!"
in the terminal

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Note: \n adds a carriage return (next line)

Object-oriented programming in C++ From the source to the execution

My first program

6

Returns the value 0
(0 means “no error” when

it’s the return code of a
program)

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Object-oriented programming in C++ From the source to the execution

Syntactic elements

7

In blue, the keywords
of the language:

#include, int, return, etc.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

A keyword is a word defined by the language

The words that are not letters are
also keywords (e.g., {, (, *, etc.)

(but they are not highlighted in blue)

Object-oriented programming in C++ From the source to the execution

Syntactic elements

8

In black: the symbols

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

A symbol is an identifier defined by the developer

Object-oriented programming in C++ From the source to the execution

Syntactic elements

9

In green, a literal that is not a number:
a string when surrounded by double quotes
the name of a file for the #include keyword

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

A literal is a fixed value in the source code

In red, a literal that is a number

Object-oriented programming in C++ From the source to the execution

Semantic elements

10

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

A function definition

A function is a group of instructions that creates a
macro-instruction

● Allows for code reuse
(avoid writing the same code several times)

● Can take arguments and return a result

Object-oriented programming in C++ From the source to the execution

Semantic elements

11

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Arguments of the function
● an integer parameter named argc
● an array of strings named argv

A function is a group of instructions that creates a
macro-instruction

● Allows for code reuse
(avoid writing the same code several times)

● Can take arguments and return a result

result of the
function:

an integer

name of the
function:

main

Object-oriented programming in C++ From the source to the execution

Semantic elements

12

A block (surrounded by { and })

A block groups together a set of instructions

Here, the block contains the instructions of the function main

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Object-oriented programming in C++ From the source to the execution

Semantic elements

13

A function call:
name_of_the_function(param0,param1...);

We say that the instruction “calls” the function “printf”

Just like if we had inserted the code of “printf” here

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Object-oriented programming in C++ From the source to the execution

Semantic elements

14

A function call:
name_of_the_function(parameters);

We say that the instruction “calls” the function “printf”

Just like if we had inserted the code of “printf” here

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

But, where is the definition of printf?

Object-oriented programming in C++ From the source to the execution

Semantic elements

15

Include directives

#include means copy-paste the content of the source file
given as argument

The file stdio.h contains the declaration of printf:
int printf(const char* format, ...);

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Object-oriented programming in C++ From the source to the execution

Semantic elements

16

the end-of-statement keyword

The semicolon indicates the end of a statement (instruction)

required because a statement can span multiple lines, e.g.:
 printf(

"Hello, world!\n"
);

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Object-oriented programming in C++ From the source to the execution

Semantic elements

17

a return
statement

return ends a function and can return a value

The function returns the literal 0
(because the function is supposed to return an int)

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Object-oriented programming in C++ From the source to the execution

You can also comment your code

◼ A comment is a text that is not executed
• Useful to explain what your code does

18

#include <stdio.h>
#include <stdlib.h>

/*
 * A multi-line comment is enclosed between
 * a slash star and a star slash
 * (note that the other stars without slashes are
 * only here to make the comment prettier)
 */
int main(int argc, char* argv[]) {
 // a single line comment starts with slash slash
 printf("Hello, world!\n");
 /* a multi-line comment on a single line */
 return 0;
}

Object-oriented programming in C++ From the source to the execution19

Congratulation!

You already understand 50% of the C language!

Object-oriented programming in C++ From the source to the execution

II. From the source to the execution

20

Object-oriented programming in C++ From the source to the execution

Writing a program in C

◼ You have to write your C code in a code editor

We advise you to use:
– vscode if you want an intuitive code editor
– emacs or vim if you want a powerful but less intuitive code editor
– we forbid the use of gedit, nano or notepad!

◼ And you have to store your source code in a file
• A C source file usually ends with the “.c” suffix

21

Object-oriented programming in C++ From the source to the execution

Compiling a program written in C

22

◼ You cannot directly execute a file that contains C code
• Before, you have to transform it into an executable that contains

– The (global) data of the program
– And the machine code corresponding to the source

◼ Machine code = the code directly executed by a processor
• A processor basically executes a loop that

– Fetches a machine instruction (a number) from memory
– Activate the hardware circuit corresponding to the instruction

• For example, the instruction 1 executes an addition, the
instruction 2 loads a byte from memory etc…

Object-oriented programming in C++ From the source to the execution

Compiling a program written in C

23

◼ Transforming a source into machine code is called
“compilation”

◼ In the course, we will use the compiler named “gcc”

Object-oriented programming in C++ From the source to the execution

Compiling a program written in C

24

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

helloworld.c

0x7f 0x45 0x4c 0x46
0x02 0x01 0x01 0x00
0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00
0x03 0x00 0x3e 0x00
0x01 0x00 0x00 ...

helloworld

gcc -Wall -Werror helloworld.c -o helloworld

● gcc: the compiler
● -Wall: reports all the possible warnings (useful to avoid bugs)
● -Werror: considers any warning as an error (useful to avoid bugs)
● helloworld.c: the source file
● -o helloworld: output (-o) the executable in the file helloworld

Object-oriented programming in C++ From the source to the execution

Developing in C step by step

25

◼ In a terminal

$ ls
$

ls: command that shows the content of a directory (i.e.,folder)
=> initially, the directory is empty

Object-oriented programming in C++ From the source to the execution

Developing in C step by step

26

◼ In a terminal (in windows)

$ ls
$ code helloworld.c
$

Use the vscode editor to write the code in helloworld.c

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) {
 printf("Hello, world!\n");
 return 0;
}

helloworld.c

(sometimes, the command is named vscode, sometimes code)

Object-oriented programming in C++ From the source to the execution

Developing in C step by step

27

◼ In a terminal

$ ls
$ vscode helloworld.c
$ ls
helloworld.c
$

Now the directory contains a single file: the source file
helloworld.c

Object-oriented programming in C++ From the source to the execution

Developing in C step by step

28

◼ In a terminal

$ ls
$ vscode helloworld.c
$ ls
helloworld.c
$ gcc -Wall -Werror helloworld.c -o helloworld
$

Compile helloworld.c into helloworld

Object-oriented programming in C++ From the source to the execution

Developing in C step by step

29

◼ In a terminal

$ ls
$ vscode helloworld.c
$ ls
helloworld.c
$ gcc -Wall -Werror helloworld.c -o helloworld
$ ls
helloworld helloworld.c
$

The directory contains now the source file helloworld.c
and the executable helloworld

Object-oriented programming in C++ From the source to the execution

Developing in C step by step

30

◼ In a terminal

$ ls
$ vscode helloworld.c
$ ls
helloworld.c
$ gcc -Wall -Werror helloworld.c -o helloworld
$ ls
helloworld helloworld.c
$./helloworld
Hello, world!

And we can finally execute our amazing application, yipeeh!

(note: the “./” at the beginning means “execute the helloworld
application located in the current directory”)

Object-oriented programming in C++ From the source to the execution

Comparison with python

31

◼ Python is an interpreted language
• It is executed by the application “python”
• You write your code in a code editor
• And the code is executed by the python interpreter with the

command “python helloworld.py”

◼ C is a compiled language
• It is executed directly by the processor
• You write your code in a code editor
• You compile your code into an executable with gcc
• And the code is executed by the processor with the command

“./helloworld”

Object-oriented programming in C++ From the source to the execution

Key concepts

32

◼ First language constructs

◼ Compilation and execution of a program

