
Object-oriented programming in C++ Variables and types

Variables and types

Bachelor of Science - École polytechnique

gael.thomas@inria.fr

1

Object-oriented programming in C++ Variables and types

Key concepts

2

◼ Variable declaration: type var;

◼ Common types:
• Integer: char, short, int, long, long long,
• Real numbers: float, double
• String: char* (not really, but enough for the moment)
• Array: type[]

◼ Type conversion
• Implicit cast when no information is lost
• Explicit with a cast operator otherwise: (type)

Object-oriented programming in C++ Variables and types

Variables in C

◼ A variable is a memory location that has
• A name: the symbol that identifies the memory location
• A type: the nature of the memory location
• A value: the content of the memory location

3

42… …

int

a

Memory

The variable is named a

It has the type int
(integer)

and it contains the
value 42

The variable is the
memory location

Object-oriented programming in C++ Variables and types

Common types in C

4

◼ Integer numbers:
• char (1 byte)
• short (2 bytes)
• int (implementation specific, most of the time 4 bytes)
• long (4 bytes)
• long long (8 bytes)
• prefix with unsigned for an unsigned integer, otherwise signed

◼ Real numbers:
• float (4 bytes)
• double (8 bytes)

◼ String
• char* (implementation specific)

(Note: char* is not a string at all, but as a first approximation, imagine
that it’s the case)

◼ Array (a sequence of elements with the same type)
• type[] (for example int[] for an array of int)

Object-oriented programming in C++ Variables and types

The pseudo-type void

5

◼ void is a pseudo-type used to indicate that a function returns
nothing

void say_hello() {
 printf("hello\n");
 return; // optional
}

Object-oriented programming in C++ Variables and types

The literals in C

6

◼ Integer: an integer value such as 0
• Encoded as an int (4 bytes)
• If suffixed with ‘l’, encoded as a long long (8 bytes), e.g., 0l

◼ Character: a letter surrounded by a single quote such as 'a'
• A character is converted into an integer named its ascii code
• And encoded as a char (1 byte)
• That’s why the type char in C is considered as an integer type

◼ Real number: a number with a dot such as 3.14
(you can also write it as 2.13e-2, which means 2.13*10-2)

• Encoded as a float (4 bytes)
• If suffixed with l, encoded as a double (8 bytes), e.g., 3.14l

◼ String: a sequence of characters surrounded by a double quote,
such as "Hello, world!\n"

Object-oriented programming in C++ Variables and types

◼ Each variable in C has to be explicitly declared
• With type name;
• The type of a variable is fixed and cannot change

Declaring a variable

7

int main(int argc, char* argv[]) {
 int x; /* declare an int */
 float f; /* declare a float */
 char* name; /* declare a string */
 int tab[4]; /* declare an array of 4 int */

 x = 42;
 f = 3.14;
 name = "Tyrion Lannister";
 tab[0] = 42; /* set the first elements of the array */

 return 0;
}

Object-oriented programming in C++ Variables and types

◼ You can also declare a variable and gives it an initial value in a
single statement

Declaring a variable

8

int main(int argc, char* argv[]) {
 int x = 42;
 int y = x + 1;
 float f = 3.14;
 char* name = "Tyrion Lannister";

 return 0;
}

Object-oriented programming in C++ Variables and types

◼ Or declare multiple variables in a single statement

Declaring a variable

9

int main(int argc, char* argv[]) {
 int x, y = 3, z;

 return 0;
}

Object-oriented programming in C++ Variables and types

Constant

10

◼ A variable can be declared constant with the const keyword
• Assign a value when it is declared
• Cannot change later

◼ Avoid bugs (read-only variable) and enables optimizations

int main(int argc, char* argv[]) {
 const int x = 42;
 printf("%d\n", x);
 //x = 33; => forbidden
 return 0;
}

Object-oriented programming in C++ Variables and types

Type conversion and cast operator

11

◼ You can convert a value from a type s to a type d with a cast
• Implicit cast when no information is lost

• Explicit cast with a cast operator otherwise: (type)

char → short → int → long → long long

↓ ↓

float → double

char a = 'a'; // 'a' => 97
int b = a; // 97
float c = b; // 97.0
double d = c; // 97.0

short e = (short)d; // 97
char f = (char)97.3; // 97 => 'a'

Object-oriented programming in C++ Variables and types

Printing a variable

◼ The printf function prints its arguments on the terminal
• Take as argument a format followed by arguments
• Note: an integer smaller than 4 bytes is promoted to 4 bytes

12

4 bytes 8 bytes Other

signed decimal %d %ld

unsigned decimal %u %lu

hexadecimal %x %lx

character %c

string %s

printf("Bip: %i %f %c %s\n", 42, 3.14, 'a', "bap");

=> “Bip: 42 3.14 a bap”

Object-oriented programming in C++ Variables and types

Comparison with python

13

◼ C is an explicitly typed language
• You have to explicitly declare a variable
• And gives it a type at declaration
• And the type cannot change later

◼ Python is a dynamically typed language
• A variable is automatically created when it is used
• Its type is dynamically deduced from the assigned value
• The type can change dynamically

x = 42
the type of x can change dynamically
x = "hello"

int x;
x = 42;
// x = "hello" => error

Object-oriented programming in C++ Variables and types

Pro and cons

14

◼ Explicit typing
• + Detect typing bugs at compilation
• + Simplify memory management since the size of a variable is

known at compilation time
• - More work for the developer

◼ Dynamic typing
• - Detect typing bugs too late, at runtime!
• - Complexify memory management since the size of a variable

can change during execution (⇒ performance overheads)
• + Less work for the developer

Object-oriented programming in C++ Variables and types

Key concepts

15

◼ Variable declaration: type var;

◼ Common types:
• Integer: char, short, int, long, long long,
• Real numbers: float, double
• String: char* (not really, but enough for the moment)
• Array: type[]

◼ Type conversion
• Implicit cast when no information is lost
• Explicit with a cast operator otherwise: (type)

