
Object-oriented programming in C++ Pointers

Pointers

Bachelor of Science - École polytechnique

gael.thomas@inria.fr

1

Object-oriented programming in C++ Pointers

Key concepts

2

◼ Declare a pointer: type* var;

◼ Get a pointer: &var

◼ Dereference a pointer: *var

◼ Passing an argument by pointer

Object-oriented programming in C++ Pointers

Memory and address (1/2)

3

◼ The memory is a big of array of bytes
• The index of a byte in this array is called an address
• Declaring a variable means allocating a memory region
• Each variable has thus an address: the address of its first byte
• Here, we say that the address of a is 0x1000

… … ??? ??? ??? ??? … … … … …

address: 0x1000
Memory

int a;

allocate an int
in memory

int value (4 bytes)

Object-oriented programming in C++ Pointers

Memory and address (2/2)

4

◼ At runtime, the name of a variable disappears
• a is a symbol that means “address 0x1000”
• The machine code replaces each instance of a by 0x1000

… … 0x42 0x00 0x00 0x00 … … … … …

int value (4 bytes)

address: 0x1000
Memory

int a;
a = 0x42; store 0x00000042 at 0x1000

machine code generated
by the compiler

store

Object-oriented programming in C++ Pointers

Address of a variable

5

◼ To retrieve the address of a variable:
• prefix the variable with &
• and print it by using "%p" in printf

int a = 0x42;
printf("a is at %p\n", &a);
// => a is at 0x1000

Object-oriented programming in C++ Pointers

Pointer type (1/2)

6

◼ You can declare a variable that contains an address
• We say that the variable is a pointer

◼ To declare a pointer: type* name;
• type: the type pointed by name
• *: indicates that the variable is a pointer
• name: the name of the variable

int a = 0x42;
int* p = &a;
printf("a is at %p\n", p);
// => a is at 0x1000

Object-oriented programming in C++ Pointers

Pointer type (2/2)

7

◼ You can declare a variable that contains an address
• We say that the variable is a pointer

◼ And you can access the value pointed by a pointer
• We say that we dereference the pointer
• To dereference a pointer p: *p

int a = 0x42;
int* p = &a;

*p = 0x666; // <=> a = 0x666

printf("a is at %p and its value is 0x%x\n", p, a);
// => a is at 0x1000 and its value is 0x666

Object-oriented programming in C++ Pointers

Cool, but what are pointers used for?

8

◼ Pointers are used everywhere in C
• You will discover where in the next lessons
• For the moment, we will use them to modify a value in a caller

◼ Sometimes, you want to return multiple values from a function
• An error code: in C, the convention is 0 if ok, -1 of error
• And a value

◼ Example: a function that divide the integer a by the integer b
• If b == 0 => returns an error
• Otherwise returns the a/b
• Problem: any integer can be the result of a/b, we can thus not

use the result a/b to indicate if an error occurred
• We need two variables to return the result

Object-oriented programming in C++ Pointers

Passing an argument by pointer

9

int div(int* p, int a, int b) {
 if(b == 0) {
 return -1
 } else {
 *p = a / b;
 return 0;
 }
}

int main(int argc, char* argv[]) {
 int res;
 int err = div(&res, 33, 0);
 if(err != 0) {
 printf("An error occured\n");
 }
 return 0;
}

p is a pointer used to store the result a / b

Object-oriented programming in C++ Pointers

Passing an argument by pointer

10

int div(int* p, int a, int b) {
 if(b == 0) {
 return -1
 } else {
 *p = a / b;
 return 0;
 }
}

int main(int argc, char* argv[]) {
 int res;
 int err = div(&res, 33, 0);
 if(err != 0) {
 printf("An error occured\n");
 }
 return 0;
}

argc 1

argv a value

res

err

frame of main

p is a pointer used to store the result a / b

Object-oriented programming in C++ Pointers

Passing an argument by pointer

11

int div(int* p, int a, int b) {
 if(b == 0) {
 return -1
 } else {
 *p = a / b;
 return 0;
 }
}

int main(int argc, char* argv[]) {
 int res;
 int err = div(&res, 33, 3);
 if(err != 0) {
 printf("An error occured\n");
 }
 return 0;
}

argc 1

argv a value

res

err

frame of main

p 0x1000

a 33

b 3

frame of div

p is a pointer used to store the result a / b

Object-oriented programming in C++ Pointers

Passing an argument by pointer

12

int div(int* p, int a, int b) {
 if(b == 0) {
 return -1
 } else {
 *p = a / b;
 return 0;
 }
}

int main(int argc, char* argv[]) {
 int res;
 int err = div(&res, 33, 3);
 if(err != 0) {
 printf("An error occured\n");
 }
 return 0;
}

argc 1

argv a value

res 11

err

frame of main

p 0x1000

a 33

b 3

frame of div

p is a pointer used to store the result a / b

Object-oriented programming in C++ Pointers

Passing an argument by pointer

13

int div(int* p, int a, int b) {
 if(b == 0) {
 return -1
 } else {
 *p = a / b;
 return 0;
 }
}

int main(int argc, char* argv[]) {
 int res;
 int err = div(&res, 33, 3);
 if(err != 0) {
 printf("An error occured\n");
 }
 return 0;
}

argc 1

argv a value

res 11

err 0

frame of main

=> two results:
● err is a direct result
● res is an indirect result

p is a pointer used to store the result a / b

Object-oriented programming in C++ Pointers

Key concepts

14

◼ Declare a pointer: type* var;

◼ Get a pointer: &var

◼ Dereference a pointer: *var

◼ Passing an argument by pointer

◼ Be careful, two uses of *: to declare and dereference a pointer

