
Object-oriented programming in C++ Modular programming

Modular programming

Bachelor of Science - École polytechnique

gael.thomas@inria.fr

1

Object-oriented programming in C++ Modular programming

Key concepts

2

◼ Compilation versus linking
• Compilation: generate an object file from a source file
• Linking: generate an executable from object files

◼ Header file
• Gather the data structures and function definitions used in

multiple source files
• Guarded with #ifndef/#define/#endif

◼ Libraries: brings a set of object files together
• Static (.a): included in each executable
• Shared (.so): shared between multiple processes

Object-oriented programming in C++ Modular programming

Modular programming

3

◼ Putting all the code in a single file is sometime unrealistic
• For example, Linux is 25 millions lines of code

◼ Sometime, we have to aggregate codes from different entities
• Reuse the code written in another program

◼ Solution: put the code in different files
• Generate a binary from several source files

Object-oriented programming in C++ Modular programming

Multiple source files in a binary

4

◼ (Bad) solution:
• Call gcc -o binary file1.c file2.c

◼ Bad solution because we have to recompile all the source files
whenever a single file is modified
• Very inefficient

◼ (Good) solution: split compilation in two phases
• Compilation: translates from source to binary objects
• Linking: aggregates several binary objects into an executable

Object-oriented programming in C++ Modular programming

◼ Two different commands
• gcc -c f.c -o f.o: compile f.c in f.o
• gcc f.o g.o -o exe: linke f.o and g.o into exe

Compilation versus linking

5

f1.c f2.c … fn.c

f1.o f2.o … fn.o

exe

source files

object files

executable

compilation: gcc -c

linking: gcc (without -c)

Object-oriented programming in C++ Modular programming

Problems

6

◼ What about the data structures?
• Replicating the definition of a data structure in each source file is

not maintainable

◼ What about the function declarations?
• How a source g.c can call a function implemented in f.c

◼ Solution: define a header file
• Suffix: .h
• Contains data structures and function declarations

(not the function implementations)
• A function declaration has to be prefixed by extern

Object-oriented programming in C++ Modular programming

Header file

7

struct point {
 int x;
 int y;
};

extern struct point* create();

point.h

#include "point.h"
#include <stdlib.h>

struct point* create() {
 struct point* p =
 malloc(sizeof(*p));
 p->x = 0;
 p->y = 0;
 return p;
}

point.c

#include "point.h"

int main(...) {
 struct point* p = create();
 ...
}

main.c

#include means
“copy-paste”

Object-oriented programming in C++ Modular programming

Include once (1/2)

8

◼ We can end up with multiple definitions of a structure

struct point {
 int x;
 int y;
};

point.h
#include "point.h"
...

a.h

#include "point.h"
...

b.h

#include "a.h"
#include "b.h"
...

main.c

=> gcc complains
because of

“multiple definitions”

Object-oriented programming in C++ Modular programming

Include once (2/2)

9

◼ Avoid multiple definitions with #ifndef/#define/#endif

#ifndef _POINT_H_
#define _POINT_H_

struct point {
 int x;
 int y;
};

#endif

point.h

◼ First include
• _POINT_H_ is not defined
• copy the content

– define _POINT_H_
– we have the definition

◼ Second include
• _POINT_H_ is already defined
• ignore the content
• => a single definition

Object-oriented programming in C++ Modular programming

Static libraries

10

◼ Static libraries: used to reuse multiple object files at once
• Aggregate several object files in an archive
• ar rcs libengine.a f1.o f2.o …

◼ Two solutions to link a binary with a static library
• gcc -o exe f3.o ../other_project/libengine.a
• gcc -o exe f3.o -lengine -L../other_project/

Object-oriented programming in C++ Modular programming

Shared library (1/2)

11

◼ With a static library, the code is replicated in each process
• Uselessly consumes memory

◼ Shared library: share the code between different processes
• gcc -shared -o libengine.so f1.c f2.c

◼ Link an executable with a shared library
• gcc -o exe f3.c -L../other_project -lengine

◼ At runtime:
• The operating system loads the library if it is not loaded yet
• Share the code from another process if the library is loaded

Object-oriented programming in C++ Modular programming

Shared library (2/2)

12

◼ When the operating system loads a binary
• It searches the shared library in the file system
• By default in /lib and /usr/lib

◼ Sometimes, a shared library is located elsewhere
• Use the shell variable LD_LIBRARY_PATH

◼ Usage

$ LD_LIBRARY_PATH=../other_project
$./my_great_program

=> search libengine in ../other_project

terminal

Object-oriented programming in C++ Modular programming

Key concepts

13

◼ Compilation versus linking
• Compilation: generate an object file from a source file
• Linking: generate an executable from object files

◼ Header file (.h)
• Gather the data structures and function definitions used in

multiple source files
• Guarded with #ifndef/#define/#endif

◼ Libraries: brings a set of object files together
• Static (.a): included in each executable
• Shared (.so): shared between multiple processes

