
Object-oriented programming in C++ Instance method, new and delete

Instance method, new and delete

Bachelor of Science - École polytechnique

gael.thomas@inria.fr

1

Object-oriented programming in C++ Instance method, new and delete

Key concepts

2

◼ A data structure or an array is an object
• The type of an object is called its class
• The object o is instance of C ⇔ the class of the object o is C

◼ An instance method is a function defined inside a structure
• It receives a this parameter named the pointer to the receiver
• this can be omitted when we access a field of the object

◼ We can allocate and free an object
• With new and delete for a data structure
• With new[] and delete[] for an array

Object-oriented programming in C++ Instance method, new and delete

The C++ language

3

◼ C++ is another language based on C
• Most of the C constructs exist in C++
• But is not a superset: some C constructs do not exist in C++

◼ C++ extends the C language with new object abstractions
• Better code reuse and structure
• Allow the developer to write more generic code

◼ In this course, we study the c++20 standard
• Compile with g++ -std=c++20

Object-oriented programming in C++ Instance method, new and delete

The object abstraction

4

◼ The C++ language is based on the object abstraction
• An object is a data structure
• that can have associated methods

◼ A method is a function that acts on an object

◼ Main advantages:
• Links a data structure with the code that manipulates it
• Make the code clearer and simpler

Object-oriented programming in C++ Instance method, new and delete

The object abstraction

5

◼ With this definition, data structures and arrays are objects

int tab[42]; // the 42 elements of the array is an object
struct monster_t m1; // m1 is an object
struct monster_t* m2 // *m2 is an object
 = (struct monster_t*)malloc(...);

Object-oriented programming in C++ Instance method, new and delete

The object abstraction

6

◼ With this definition, data structures and arrays are objects

◼ An object has a type, and we call this type its class
• The class of tab is int[]
• The classes of m1 and *m2 are monster_t

◼ If an object o has the class C, we say that o is an instance of C
• tab is an instance of int[]
• m1 and *m2 are instances of monster_t

int tab[42]; // the 42 elements of the array is an object
struct monster_t m1; // m1 is an object
struct monster_t* m2 // *m2 is an object
 = (struct monster_t*)malloc(...);

Object-oriented programming in C++ Instance method, new and delete

Instance method

7

◼ In C
• We define a data structure
• And often a function that acts on the data structure

// header file
struct monster_t {
 const char* name;
 int health;
};

extern void print_monster(struct monster_t* m);

// source file
void print_monster(struct monster_t* m) {
 printf("(%s, %d)\n", m->name, m->health);
}

acts on a struct monster_t

Object-oriented programming in C++ Instance method, new and delete

◼ In C
• We define a data structure
• And often a function that acts on the data structure

// header file
struct monster_t {
 const char* name;
 int health;
};

extern void print_monster(struct monster_t* m);

// source file
void print_monster(struct monster_t* m) {
 printf("(%s, %d)\n", m->name, m->health);
}

Instance method

8

But naming a function
print_monster because it
acts on a monster is only a

convention

Object-oriented programming in C++ Instance method, new and delete

◼ In C
• We define a data structure
• And often a function that acts on the data structure

// header file
struct monster_t {
 const char* name;
 int health;
};

extern void print_monster(struct monster_t* m);

// source file
void print_monster(struct monster_t* m) {
 printf("(%s, %d)\n", m->name, m->health);
}

Instance method

9

Add having a parameter with
the type struct monster_t*

seems obvious

Object-oriented programming in C++ Instance method, new and delete

Instance method

10

◼ C++ introduces instance methods
• Move print_monster inside the structure declaration
• Which adds it an implicit parameter with the type monster_t*

named this

// header file
struct monster_t {
 const char* name;
 int health;

 void print();
};

// source file
void monster_t::print() {
 printf("(%s, %d)\n", this->name, this->health);
}

this is now an implicit parameter
with the type struct monster_t*

Object-oriented programming in C++ Instance method, new and delete

Instance method

11

◼ C++ introduces instance methods
• Move print_monster inside the structure declaration
• Which adds it an implicit parameter with the type monster_t*

named this

// header file
struct monster_t {
 const char* name;
 int health;

 void print();
};

// source file
void monster_t::print() {
 printf("(%s, %d)\n", name, health);
}

this can be omitted

Object-oriented programming in C++ Instance method, new and delete

Instance method

12

◼ C++ introduces instance methods
• Move print_monster inside the structure declaration
• Which adds it an implicit parameter with the type monster_t*

named this

// header file
struct monster_t {
 const char* name;
 int health;

 void print();
};

// source file
void monster_t::print() {
 printf("(%s, %d)\n", name, health);
}

print is the print method that
belongs to monster_t
=> no need to name it

print_monster

Object-oriented programming in C++ Instance method, new and delete

Instance method

13

◼ C++ introduces instance methods
• Move print_monster inside the structure declaration
• Which adds it an implicit parameter with the type monster_t*

named this

// header file
struct monster_t {
 const char* name;
 int health;

 void print();
};

// source file
void monster_t::print() {
 printf("(%s, %d)\n", name, health);
}

We now say that print is an
instance method

of the class monster_t

Object-oriented programming in C++ Instance method, new and delete

Using an instance method

14

◼ Call an instance method with var.f()

int main(int argc, char* argv[]) {
 struct monster_t m = { "Pikachu", 42 };

 m.print(); // this in monster_t::print points to m
 // like a call to monster_t::print(&m);
 return 0;
}

We say that the object m is the receiver of the method call
=> this is a pointer to the receiver

Object-oriented programming in C++ Instance method, new and delete

Code simplification

15

◼ In C++, we can also get rid of struct when we use the type
monster_t

int main(int argc, char* argv[]) {
 monster_t m = { "Pikachu", 42 };

 m.print(); // this in monster_t::print points to m
 // like a call to monster_t::print(&m);
 return 0;
}

Object-oriented programming in C++ Instance method, new and delete

Code simplification

16

◼ In C++, the = is also useless: initialize the fields of m with the
parameters between the braces without =

int main(int argc, char* argv[]) {
 monster_t m { "Pikachu", 42 };

 m.print(); // this in monster_t::print points to m
 // like a call to monster_t::print(&m);
 return 0;
}

Object-oriented programming in C++ Instance method, new and delete

The new keyword

17

◼ Allocating and initializing a data structure remains painful
• malloc takes the allocated size as argument
• Its result has to be casted into a monster_t
• And the fields have to be initialized manually

int main(int argc, char* argv[]) {
 monster_t* m = (monster_t*)malloc(sizeof(*m));

 m->name = "Pikachu";
 m->health = 42;

 m->print();

 ...
}

Object-oriented programming in C++ Instance method, new and delete

The new keyword

18

◼ new: simplifies the allocation code
• Allocates the data structure without explicitly giving its size
• And initializes the fields in the same statement

int main(int argc, char* argv[]) {
 monster_t* m = new monster_t { "Pikachu", 42 };

 m->print();

 ...
}

Object-oriented programming in C++ Instance method, new and delete

The delete keyword

19

◼ Use delete instead of free to free a data structure allocated
with new

int main(int argc, char* argv[]) {
 monster_t* m = new monster_t { "Pikachu", 42 };

 m->print();

 delete m;
 ...
}

Object-oriented programming in C++ Instance method, new and delete

Dynamically allocated arrays

20

◼ Similarly, allocate / free an array with new[] / delete[]
• With an explicit size in new

int main(int argc, char* argv[]) {
 monster_t* m = new monster_t[2];

 m[0] = { "Pikachu", 42 };
 m[1] = { "Blastoise", 83 };

 delete[] m;

 return 0;
}

Object-oriented programming in C++ Instance method, new and delete

Dynamically allocated arrays

21

◼ Similarly, allocate / free an array with new[] / delete[]
• With an explicit size in new
• Or with an implicit size because of the initializer

int main(int argc, char* argv[]) {
 monster_t* m = new monster_t[] {
 { "Pikachu", 42 },
 { "Blastoise", 83 }
 };

 delete[] m;

 return 0;
}

Object-oriented programming in C++ Instance method, new and delete

Key concepts

22

◼ A data structure or an array is an object
• The type of an object is called its class
• The object o is instance of C ⇔ the class of the object o is C

◼ An instance method is a function defined inside a structure
• It receives a this parameter named the pointer to the receiver
• this can be omitted when we access a field of the object

◼ We can allocate and free an object
• With new and delete for a data structure
• With new[] and delete[] for an array

