
Object-oriented programming in C++ Constructors and destructors

Constructors and destructors

Bachelor of Science - École polytechnique

gael.thomas@inria.fr

1

Object-oriented programming in C++ Constructors and destructors

Key concepts

2

◼ A constructor
• Is a method of a class that has the name of the class
• Used to initialize the fields of an object
• A class can have several constructors with different parameters

◼ A destructor
• Is a method that has the name of the class prefixed by a tilde
• Called when the object is destroyed

Object-oriented programming in C++ Constructors and destructors

Constructors

3

◼ When we allocate an object, we often have to
• Pre-initialize some of the fields at fix values
• Or to execute some code

struct monster_t {
 const char* name;
 int health;
 int experience; // has to be initialized to 0

 void print();
};

int main(int argc, char* argv[]) {
 monster_t monster { "Pikachu", 42, 0 };

 return 0;
}

Error-prone

Object-oriented programming in C++ Constructors and destructors

Constructors

4

◼ To initialize the fields of an object, use a constructor
• A method with the name of the class
• And with initialization parameters

struct monster_t {
 const char* name;
 int health;
 int experience;

 monster_t(const char* name, int health);

 void print();
};

A constructor

Object-oriented programming in C++ Constructors and destructors

Constructor implementation

5

◼ Three part in a constructor
• A declaration
• Followed by a set of field initializers that come after a colon

– Initialize the fields like we initialize an object with braces
• A body that can contain more complex code

monster_t::monster_t(const char* name, int health)
 : name { name },
 health { health },
 experience { 0 } {
 // more complex initialisation code goes here
}

The field name of this is initialized
with the value of the parameter name

name of this

Object-oriented programming in C++ Constructors and destructors

Using a constructor

6

◼ Using a constructor is transparent
• Use it exactly as we use a list initializer for the fields when the

structure does not have a constructor

int main(int argc, char* argv[]) {
 monster_t m { "Pikachu", 42 };
 return 0;
}

Call monster_t::monster_t(const char* name, int health)
with the parameters "Pikachu" and 42

=> m.experience is initialized to 0

Object-oriented programming in C++ Constructors and destructors

Using a constructor

7

◼ As soon as a constructor exists, we have to use it
• Cannot use { "Pikachu", 42, 0 } anymore

int main(int argc, char* argv[]) {
 monster_t m { "Pikachu", 42 };
 return 0;
}

Call monster_t::monster_t(const char* name, int health)
with the parameters "Pikachu" and 42

=> m.experience is initialized to 0

Object-oriented programming in C++ Constructors and destructors

Chained constructors

8

◼ We can have several constructors with different parameters
• And we can chain them

struct monster_t {
 const char* name;
 int health;
 int experience;

 monster_t(const char* name, int health);
 monster_t(const char* name, int health, int experience);
};

monster_t::monster_t(const char* name, int health)
 : monster_t(name, health, 0) { } // chained to second constructor

monster_t::monster_t(const char* name, int health, int experience)
 : name { name }, health { health }, experience { experience } { }

Object-oriented programming in C++ Constructors and destructors

Default parameters

9

◼ We can achieve the same goal with default parameters

struct monster_t {
 const char* name;
 int health;
 int experience;

 monster_t(const char* name, int health, int experience = 0);
};

monster_t::monster_t(const char* name, int health, int experience)
 : name { name }, health { health }, experience { experience } {

}

Object-oriented programming in C++ Constructors and destructors

Advanced constructor

10

◼ A constructor can execute any operation in its body

struct array_t {
 monster_t** monsters;
 size_t nb_monsters;

 array_t(size_t n);
};

array_t::array_t(size_t n) {
 monsters = new monster_t*[n];
 nb_monsters = n;
}

int main(int argc, char* argv[]) {
 array_t array { 78 };
}

Object-oriented programming in C++ Constructors and destructors

Destructor

11

◼ In this case, the memory has to be freed when the object is
destroyed
• Use a destructor
• The destructor is a method named with the type prefixed with ~

struct array_t {
 monster_t** monsters;
 size_t nb_monsters;

 array_t(size_t n);
 ~array_t();
};

Object-oriented programming in C++ Constructors and destructors

Destructor

12

◼ Implementation of a destructor: like any other method

array_t::array_t(size_t n) {
 monsters = new monster_t*[n];
 nb_monsters = n;
}

array_t::~array_t() {
 delete[] monsters;
}

Object-oriented programming in C++ Constructors and destructors

◼ The destructor is called
• When we call delete
• Or when a variable is destroyed (e.g., return from a call frame)

Destructor

13

void test() {
 array_t x { 4 };
 array_t* p = new array_t { 4 };

 delete p; // destructor of p called here

 // destructor of x called when the
 // function returns
}

Object-oriented programming in C++ Constructors and destructors

Key concepts

14

◼ A constructor
• Is a method of a class that has the name of the class
• Used to initialize the fields of an object
• A class can have several constructors with different parameters

◼ A destructor
• Is a method that has the name of the class prefixed by a tilde
• Called when the object is destroyed

