
Object-oriented programming in C++ Inheritance

Inheritance

Bachelor of Science - École polytechnique

gael.thomas@inria.fr

1

Object-oriented programming in C++ Inheritance

Key concepts

2

◼ If a class B inherits from a class A
• B contains the fields and methods of A
• The type B is compatible with A (but not vice-versa)

◼ A class can
• Inherits from multiple classes
• Uses the constructors of its direct parents in its constructor

◼ Static versus dynamic dispatch
• By default C++ uses static dispatch
• A virtual method uses dynamic dispatch
• A pure virtual method is a virtual method without body

Object-oriented programming in C++ Inheritance

Summary

3

1. Principle of inheritance

2. Inheritance and typing

3. Multiple inheritance

4. Inheritance and visibility

5. Inheritance and constructors

6. Static versus dynamic dispatch

7. Dynamic cast

Object-oriented programming in C++ Inheritance

Principle of inheritance

4

◼ Principle: a child class can inherit a parent class
• The child class has the fields and methods of the parent
• And can add new one to specialize the parent
• The child defines a new type
• The child type is compatible with the type of the parent

◼ Inheritance is a transitive relationship
• If C inherits B and B inherits A, then C inherits A

Object-oriented programming in C++ Inheritance

Goal of inheritance

5

◼ Inheritance is useful to specialize a class
• A generic item in a game, specialized to a weapon or a potion
• A generic output stream, specialized for the terminal or for the

file system
• …

◼ Improve code reusability by manipulating the parent
• The inventory of a character holds items
• A code that prints to a stream
• …

Object-oriented programming in C++ Inheritance

Inheritance by example

6

weight: int

get_weight()
render()

damage: int

get_damage()

sword_t club_t

potion_t

strength: int

set_strength()

type: int

get_type()

item_t

poison_t

weapon_t

treatment_t

Object-oriented programming in C++ Inheritance

Inheritance by example

7

struct item_t {
 int weight;
 int get_weight() { return weight; }
 void render() { ... }
};

struct weapon_t : item_t {
 int damage;
 int get_damage() { return damage; }
};

struct potion_t : item_t {
};

int main(int argc, char* argv[]) {
 weapon_t w { 42, 666 };
 std::cout << w.get_weight() << std::endl; // 42
 std::cout << w.get_damage() << std::endl; // 666
 return 0;
}

 “:” means
“inherits”

Object-oriented programming in C++ Inheritance

Summary

8

1. Principle of inheritance

2. Inheritance and typing

3. Multiple inheritance

4. Inheritance and visibility

5. Inheritance and constructors

6. Static versus dynamic dispatch

7. Dynamic cast

Object-oriented programming in C++ Inheritance

Type compatibility: upcast

9

◼ The type of a child is compatible with the type of the parent
• We can upcast a child to its parent

int main(int argc, char* argv[]) {
 item_t* item = new sword_t { 5 };
 // a sword_t is a kind of item_t
 // here use the sword as an item_t
 // => can access the item_t fields and methods
 std::cout << item->get_weight() << std::endl;
 return 0;
}

In this example, we can only use the
item_t fields and methods by using the
item variable, not the ones of sword_t

Object-oriented programming in C++ Inheritance

Type compatibility: downcast

10

◼ C++ signals an error if we downcast a parent to one of its
children

int main(int argc, char* argv[]) {
 item_t* item = new sword_t { 5 };
 // sword_t* sword = item;
 // => error because an item is not necessarily a sword
 return 0;
}

Object-oriented programming in C++ Inheritance

Type compatibility: downcast

11

◼ You can however downcast a parent to one of its children by
using an explicit static cast
• static_cast<destination_type_t>(value)

int main(int argc, char* argv[]) {
 item_t* item = new sword_t { 5 };
 sword_t* sword = static_cast<sword_t*>(item); // ok
 club_t* club = static_cast<club_t*>(item); // bug!!!
 return 0;
}

A static_cast is dangerous: item is a sword_t, but not a club_t
=> the cast to club_t will lead to bugs at runtime

(more about casts later)

Object-oriented programming in C++ Inheritance

Upcast and generic code

12

◼ Thanks to an upcast, you can write a generic code
• By only considering the fields and methods of a parent class

int main(int argc, char* argv[]) {
 item_t* items[] = {
 new sword_t { 3 }, // weight = 3
 new club_t { 2 }, // weight = 5
 new poison_t { 7 } // weight = 7
 };

 int tot_weight = 0;
 for(int i=0; i<3; i++)
 tot_weight += items[i]->get_weight();

 std::cout << tot_weight << std::endl; // 12

 return 0;
}

Object-oriented programming in C++ Inheritance

Summary

13

1. Principle of inheritance

2. Inheritance and typing

3. Multiple inheritance

4. Inheritance and visibility

5. Inheritance and constructors

6. Static versus dynamic dispatch

7. Dynamic cast

Object-oriented programming in C++ Inheritance

Multiple inheritance

14

◼ A structure or a class can inherit one or multiple types

struct a_t { ... };
struct b_t { ... };
struct c_t : a_t, b_t { };

c_t inherits the fields and methods of both a_t and b_t

Object-oriented programming in C++ Inheritance

Summary

15

1. Principle of inheritance

2. Inheritance and typing

3. Multiple inheritance

4. Inheritance and visibility

5. Inheritance and constructors

6. Static versus dynamic dispatch

7. Dynamic cast

Object-oriented programming in C++ Inheritance

Inheritance and visibility

16

◼ The default visibility of a parent is given by the keyword used
to define the class
• struct => by default public

=> fields and methods of parents visible everywhere
• class => by default private

=> fields and methods of parents only visible from the child

◼ You can change the default visibility with public and private

Object-oriented programming in C++ Inheritance

Inheritance and visibility

17

struct a_t { int x; };
struct b_t { int y; };

class c_t : public a_t, b_t {
 void f() { x = 1; y = 2; } // parent always visible from child
};

struct d_t : private a_t, b_t {
 void f() { x = 1; y = 2; } // parent always visible from child
};

int main(int argc, char* argv[]) {
 c_t c; d_t d;
 std::cout << c.x << std::endl;
 //std::cout << c.y << std::endl; hidden (c_t defined with class)
 //std::cout << d.x << std::endl; hidden (a_t is private)
 std::cout << d.y << std::endl;
 return 0;
}

Object-oriented programming in C++ Inheritance

Inheritance and visibility

18

◼ C++ also introduces the protected visibility
• A parent defined as protected is transitively visible in all

inherited classes
• While a private parent is visible only in a direct child

struct a_t { int x; };

class b_t : protected a_t { };

class c_t : b_t {
 void f() { x = 42; } // visible through protected
};

Note: a field can also be protected

Object-oriented programming in C++ Inheritance

Summary

19

1. Principle of inheritance

2. Inheritance and typing

3. Multiple inheritance

4. Inheritance and visibility

5. Inheritance and constructors

6. Static versus dynamic dispatch

7. Dynamic cast

Object-oriented programming in C++ Inheritance

Inheritance and constructors

20

◼ A child can use a constructor of a parent in its constructors
• By considering a field named as the parent in the constructor

struct item_t {
 int weight;
 item_t(int weight) : weight { weight } { }
};

struct weapon_t : item_t {
 int damage;
 weapon_t(int weight) : item_t { weight }, damage { 100 } { }
};

int main(int argc, char* argv[]) {
 weapon_t w { 33 };
 return 0;
}

Object-oriented programming in C++ Inheritance

Summary

21

1. Principle of inheritance

2. Inheritance and typing

3. Multiple inheritance

4. Inheritance and visibility

5. Inheritance and constructors

6. Static versus dynamic dispatch

7. Dynamic cast

Object-oriented programming in C++ Inheritance

Static dispatch

22

◼ If a method is redefined in a child
the static type of an object is used
to identify the method that is called

struct item_t {
 std::string render() {
 return "item";
 }
};

struct weapon_t : item_t {
 std::string render() {
 return "weapon";
 }
};

struct potion_t : item_t {
 std::string render() {
 return "potion";
 }
};

int main(int argc, char* argv[]) {
 item_t* it[] = { new weapon_t {}, new potion_t {} };

 std::cout << it[0]->render() << " " << it[1]->render() << std::endl;
 // => item item
 return 0;
}

Object-oriented programming in C++ Inheritance

Dynamic dispatch (virtual)

23

◼ The virtual keyword changes
this behavior: the method of the
actual type is used

struct item_t {
 virtual std::string render() {
 return "item";
 }
};

struct weapon_t : item_t {
 std::string render() {
 return "weapon";
 }
};

struct potion_t : item_t {
 std::string render() {
 return "potion";
 }
};

int main(int argc, char* argv[]) {
 item_t* it[] = { new weapon_t {}, new potion_t {} };

 std::cout << it[0]->render() << " " << it[1]->render() << std::endl;
 // => weapon potion
 return 0;
}

Object-oriented programming in C++ Inheritance

Dynamic dispatch (virtual)

24

◼ The virtual/non virtual behavior
• Is fixed by the first method in a class hierarchy
• And cannot be modified in children classes

Object-oriented programming in C++ Inheritance

Pure virtual methods

25

◼ A pure virtual method is defined at 0
• Does not have a body
• Its class cannot be instantiated, but the type can be used
• Instantiable children have to implement the method
• Useful to force overriding

struct item_t {
 virtual std::string render() = 0;
};

struct potion_t : item_t {
 std::string render() {
 return "potion";
 }
};

struct weapon_t : item_t {
 std::string render() {
 return "weapon";
 }
};

Object-oriented programming in C++ Inheritance

Pure virtual methods

26

struct item_t {
 virtual std::string render() = 0;
};

int main(int argc, char* argv[]) {
 item_t* it[] = { new weapon_t {}, new potion_t {} };

 std::cout << it[0]->render() << " " << it[1]->render() << std::endl;
 // => weapon potion
 return 0;
}

struct potion_t : item_t {
 std::string render() {
 return "potion";
 }
};

struct weapon_t : item_t {
 std::string render() {
 return "weapon";
 }
};

Object-oriented programming in C++ Inheritance

Summary

27

1. Principle of inheritance

2. Inheritance and typing

3. Multiple inheritance

4. Inheritance and visibility

5. Inheritance and constructors

6. Static versus dynamic dispatch

7. Dynamic cast

Object-oriented programming in C++ Inheritance

dynamic_cast

28

◼ dynamic_cast: as static_cast
• But return nullptr if the type is incompatible
• Only usable with polymorphic classes

(i.e., at least one virtual method)

int main(int argc, char* argv[]) {
 item_t* item = new sword_t { 5 };
 sword_t* sword = dynamic_cast<sword_t*>(item); // ok
 club_t* club = dynamic_cast<club_t*>(item); // nullptr

 if(sword == nullptr)
 std::cout << "this is not a sword" << std::endl;
 if(club == nullptr)
 std::cout << "this is not a club" << std::endl;

 return 0;
}

Object-oriented programming in C++ Inheritance

Key concepts

29

◼ If a class B inherits from a class A
• B contains the fields and methods of A
• The type B is compatible with A (but not vice-versa)

◼ A class can
• Inherits from multiple classes
• Uses the constructors of its direct parents in its constructor

◼ Static versus dynamic dispatch
• By default C++ uses static dispatch
• A virtual method uses dynamic dispatch
• A pure virtual method is a virtual method without body

