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◼ If a class B inherits from a class A
• B contains the fields and methods of A
• The type B is compatible with A (but not vice-versa)

◼ A class can 
• Inherits from multiple classes
• Uses the constructors of its direct parents in its constructor

◼ Static versus dynamic dispatch
• By default C++ uses static dispatch
• A virtual method uses dynamic dispatch
• A pure virtual method is a virtual method without body
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1. Principle of inheritance

2. Inheritance and typing

3. Multiple inheritance

4. Inheritance and visibility

5. Inheritance and constructors

6. Static versus dynamic dispatch

7. Dynamic cast
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◼ Principle: a child class can inherit a parent class
• The child class has the fields and methods of the parent
• And can add new one to specialize the parent
• The child defines a new type
• The child type is compatible with the type of the parent

◼ Inheritance is a transitive relationship
• If C inherits B and B inherits A, then C inherits A
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◼ Inheritance is useful to specialize a class
• A generic item in a game, specialized to a weapon or a potion
• A generic output stream, specialized for the terminal or for the 

file system
• …

◼ Improve code reusability by manipulating the parent
• The inventory of a character holds items
• A code that prints to a stream
• …
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weight: int

get_weight()
render()

damage: int

get_damage()

sword_t club_t

potion_t

strength: int

set_strength()

type: int

get_type()

item_t

poison_t

weapon_t

treatment_t
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struct item_t {
  int weight;
  int get_weight() { return weight; }
  void render()  { ... }
};

struct weapon_t : item_t {
  int damage;
  int get_damage() { return damage; }
};

struct potion_t : item_t {
};

int main(int argc, char* argv[]) {
  weapon_t w { 42, 666 };
  std::cout << w.get_weight() << std::endl; // 42
  std::cout << w.get_damage() << std::endl; // 666
  return 0;
}

 “:” means 
“inherits”
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◼ The type of a child is compatible with the type of the parent
• We can upcast a child to its parent

int main(int argc, char* argv[]) {
  item_t* item = new sword_t { 5 };
  // a sword_t is a kind of item_t
  // here use the sword as an item_t
  // => can access the item_t fields and methods
  std::cout << item->get_weight() << std::endl;
  return 0;
}

In this example, we can only use the 
item_t fields and methods by using the 
item variable, not the ones of sword_t
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◼ C++ signals an error if we downcast a parent to one of its 
children

int main(int argc, char* argv[]) {
  item_t* item = new sword_t { 5 };
  // sword_t* sword = item;
  //   => error because an item is not necessarily a sword
  return 0;
}
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◼ You can however downcast a parent to one of its children by 
using an explicit static cast
• static_cast<destination_type_t>(value)

int main(int argc, char* argv[]) {
  item_t* item = new sword_t { 5 };
  sword_t* sword = static_cast<sword_t*>(item); // ok
  club_t* club = static_cast<club_t*>(item);    // bug!!!
  return 0;
}

A static_cast is dangerous: item is a sword_t, but not a club_t
=> the cast to club_t will lead to bugs at runtime

(more about casts later)
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◼ Thanks to an upcast, you can write a generic code
• By only considering the fields and methods of a parent class

int main(int argc, char* argv[]) {
  item_t* items[] = {
    new sword_t  { 3 }, // weight = 3
    new club_t   { 2 }, // weight = 5
    new poison_t { 7 }  // weight = 7
  };

  int tot_weight = 0;
  for(int i=0; i<3; i++)
    tot_weight += items[i]->get_weight();

  std::cout << tot_weight << std::endl; // 12

  return 0;
}
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◼ A structure or a class can inherit one or multiple types

struct a_t { ... };
struct b_t { ... };
struct c_t : a_t, b_t { };

c_t inherits the fields and methods of both a_t and b_t
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◼ The default visibility of a parent is given by the keyword used 
to define the class
• struct => by default public

=> fields and methods of parents visible everywhere
• class => by default private

=> fields and methods of parents only visible from the child

◼ You can change the default visibility with public and private
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struct a_t { int x; };
struct b_t { int y; };

class c_t : public a_t, b_t {
  void f() { x = 1; y = 2; } // parent always visible from child
};

struct d_t : private a_t, b_t {
  void f() { x = 1; y = 2; } // parent always visible from child
};

int main(int argc, char* argv[]) {
  c_t c; d_t d;
  std::cout << c.x << std::endl;
  //std::cout << c.y << std::endl; hidden (c_t defined with class)
  //std::cout << d.x << std::endl; hidden (a_t is private)
  std::cout << d.y << std::endl;
  return 0;
}
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◼ C++ also introduces the protected visibility
• A parent defined as protected is transitively visible in all 

inherited classes
• While a private parent is visible only in a direct child

struct a_t {  int x;  };

class b_t : protected a_t {  };

class c_t : b_t {
  void f() { x = 42; } // visible through protected
};

Note: a field can also be protected
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◼ A child can use a constructor of a parent in its constructors
• By considering a field named as the parent in the constructor

struct item_t {
  int weight;
  item_t(int weight) : weight { weight } { }
};

struct weapon_t : item_t {
  int damage;
  weapon_t(int weight) : item_t { weight }, damage { 100 } { }
};

int main(int argc, char* argv[]) {
  weapon_t w { 33 };
  return 0;
}
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◼ If a method is redefined in a child
the static type of an object is used
to identify the method that is called

struct item_t {
  std::string render() {
    return "item";
  }
};

struct weapon_t : item_t {
  std::string render() {
    return "weapon";
  }
};

struct potion_t : item_t {
  std::string render() {
    return "potion";
  }
};

int main(int argc, char* argv[]) {
  item_t* it[] = { new weapon_t {}, new potion_t {} };

  std::cout << it[0]->render() << " " << it[1]->render() << std::endl;
  // => item item
  return 0;
}
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◼ The virtual keyword changes 
this behavior: the method of the 
actual type is used

struct item_t {
  virtual std::string render() {
    return "item";
  }
};

struct weapon_t : item_t {
  std::string render() {
    return "weapon";
  }
};

struct potion_t : item_t {
  std::string render() {
    return "potion";
  }
};

int main(int argc, char* argv[]) {
  item_t* it[] = { new weapon_t {}, new potion_t {} };

  std::cout << it[0]->render() << " " << it[1]->render() << std::endl;
  // => weapon potion
  return 0;
}
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◼ The virtual/non virtual behavior
• Is fixed by the first method in a class hierarchy
• And cannot be modified in children classes
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◼ A pure virtual method is defined at 0
• Does not have a body
• Its class cannot be instantiated, but the type can be used
• Instantiable children have to implement the method
• Useful to force overriding

struct item_t {
  virtual std::string render() = 0;
};

struct potion_t : item_t {
  std::string render() {
    return "potion";
  }
};

struct weapon_t : item_t {
  std::string render() {
    return "weapon";
  }
};
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struct item_t {
  virtual std::string render() = 0;
};

int main(int argc, char* argv[]) {
  item_t* it[] = { new weapon_t {}, new potion_t {} };

  std::cout << it[0]->render() << " " << it[1]->render() << std::endl;
  // => weapon potion
  return 0;
}

struct potion_t : item_t {
  std::string render() {
    return "potion";
  }
};

struct weapon_t : item_t {
  std::string render() {
    return "weapon";
  }
};
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◼ dynamic_cast: as static_cast
• But return nullptr if the type is incompatible
• Only usable with polymorphic classes

(i.e., at least one virtual method)

int main(int argc, char* argv[]) {
  item_t* item = new sword_t { 5 };
  sword_t* sword = dynamic_cast<sword_t*>(item); // ok
  club_t* club = dynamic_cast<club_t*>(item);    // nullptr

  if(sword == nullptr)
    std::cout << "this is not a sword" << std::endl;
  if(club == nullptr)
    std::cout << "this is not a club" << std::endl;

  return 0;
}
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◼ If a class B inherits from a class A
• B contains the fields and methods of A
• The type B is compatible with A (but not vice-versa)

◼ A class can 
• Inherits from multiple classes
• Uses the constructors of its direct parents in its constructor

◼ Static versus dynamic dispatch
• By default C++ uses static dispatch
• A virtual method uses dynamic dispatch
• A pure virtual method is a virtual method without body


