
Object-oriented programming in C++ References

References

Bachelor of Science - École polytechnique

gael.thomas@inria.fr

1

Object-oriented programming in C++ References

Key concepts

2

◼ A reference is an alias to an object
• Behaves as a pointer that necessarily points to a valid object
• Declared with type& var
• Assigned at creation, and cannot be change later

Object-oriented programming in C++ References

The hell of pointers

3

◼ Using a pointer is difficult because nothing guarantee that a
pointer points to a valid object
• Can be a null pointer (if you are lucky)
• Or any random memory location

int main(int argc, char* argv[]) {
 struct monster_t* m = (struct monster_t*)0x1000;

 m->print(); // => probably a bug because 0x1000
 // does not have any reason to
 // contain a valid monster_t!

 return 0;
}

Object-oriented programming in C++ References

The hell of pointers

4

◼ Using a pointer is difficult because nothing guarantees that a
pointer points to a valid object
• Can be a null pointer (if you are lucky)
• Or any random memory location

int main(int argc, char* argv[]) {
 struct monster_t* m; // not initialized!!!

 m->print(); // => probably a bug because m
 // does not have any reason to
 // point to a valid monster_t!

 return 0;
}

Object-oriented programming in C++ References

References

5

◼ A reference is a pointer that is guaranteed to point to a valid
object
• Cannot be null and can only point to a valid object

◼ Declared with type& var
• Difference with a pointer: has to be initialized with a valid object

+ cannot be change after initialization

int main(int argc, char* argv[]) {
 int x = 42;
 int& r = x;

 return 0;
}

int* r = &x

Rewritten by the
compiler as

Object-oriented programming in C++ References

References

6

◼ A reference is a pointer that is guaranteed to point to a valid
object
• Cannot be null and can only point to a valid object

◼ Declared with type& var
• Difference with a pointer: has to be initialized with a valid object

+ cannot be change after initialization

int main(int argc, char* argv[]) {
 int x = 42;
 int& r;

 return 0;
}

Error, uninitialized
reference

Object-oriented programming in C++ References

References

7

◼ Because a reference is necessarily initialized with a valid
object, it can only points to a valid object

◼ Except when we mix pointers and references

int main(int argc, char* argv[]) {
 int* x = (int*)0x1000;
 int& r = *x;

 printf("%d\n", r);
 return 0;
}

Here the compiler trusts us: the code says that *x is a valid object
=> r references an invalid object

Object-oriented programming in C++ References

References

8

◼ Because a reference is necessarily initialized with a valid
object, it can only points to a valid object

◼ Except when we mix pointers and references

◼ But overall, references avoid many bugs: use them as much as
you can!

Object-oriented programming in C++ References

A reference is assigned once

9

◼ A reference is assigned once when initialized
and it never changed after

int main(int argc, char* argv[]) {
 int x = 42;
 int y = 66;
 int& r = x;
 r = y;
 // => r remains a reference to x
 // “r = y” stores 66 in x
}

A reference is an alias for another object
(=> the compiler does not necessarily allocate memory for the

reference, it tries to only use it during compilation)

Object-oriented programming in C++ References

References and functions

10

◼ A function can have a parameter with a reference type
• In this case, in the caller, we don’t explicitly take the address
• We say that the argument is passed by reference

void f(struct monster_t& m) {
 std::cout << m.name << std::endl;
}

int main(int argc, char* argv[]) {
 monster_t m { "Pikachu", 42 };
 f(m);
 return 0;
}

f(&m)

… f(...* m)

m->name

Rewritten by the
compiler as

Note: parameter initialized once with the frame is allocated

Object-oriented programming in C++ References

References and functions

11

◼ A function can have a parameter with a reference type
• In this case, in the caller, we don’t explicitly take the address
• We say that the argument is passed by reference

void f(struct monster_t& m) {
 std::cout << m.name << std::endl;
}

int main(int argc, char* argv[]) {
 monster_t m { "Pikachu", 42 };
 f(m);
 return 0;
}

argc 1

argv a value

m 0x1000 42

frame of main

m 0x4060

frame of f

Object-oriented programming in C++ References

References and functions

12

◼ Consequence: the callee modifies the data structure in the
caller

void f(struct monster_t& m) {
 std::cout << m.name << std::endl;
 m.health = 33;
}

int main(int argc, char* argv[]) {
 monster_t m { "Pikachu", 42 };
 f(m);
 return 0;
}

argc 1

argv a value

m 0x1000 33

frame of main

m 0x4060

frame of f

Object-oriented programming in C++ References

References, pointers and functions

13

◼ If p is a pointer to an object allocated with new
• Since *p is a valid object, it can be passed as a parameter

void f(struct monster_t& m) {
 std::cout << m.name << std::endl;
 m.health = 33;
}

int main(int argc, char* argv[]) {
 monster_t* p =
 new monster_t { "Pikachu", 42 };
 f(*p);
 return 0;
}

argc 1

argv a value

p

frame of main

Object-oriented programming in C++ References

References, pointers and functions

14

◼ If p is a pointer to an object allocated with new
• Since *p is a valid object, it can be passed as a parameter

void f(struct monster_t& m) {
 std::cout << m.name << std::endl;
 m.health = 33;
}

int main(int argc, char* argv[]) {
 monster_t* p =
 new monster_t { "Pikachu", 42 };
 f(*p);
 return 0;
}

argc 1

argv a value

p 0x9010

frame of main

0x1000 42

Object-oriented programming in C++ References

References, pointers and functions

15

◼ If p is a pointer to an object allocated with new
• Since *p is a valid object, it can be passed as a parameter

void f(struct monster_t& m) {
 std::cout << m.name << std::endl;
 m.health = 33;
}

int main(int argc, char* argv[]) {
 monster_t* p =
 new monster_t { "Pikachu", 42 };
 f(*p);
 return 0;
}

argc 1

argv a value

p 0x9010

frame of main

m 0x9010

frame of f

0x1000 42

Object-oriented programming in C++ References

References, pointers and functions

16

◼ If p is a pointer to an object allocated with new
• Since *p is a valid object, it can be passed as a parameter

void f(struct monster_t& m) {
 std::cout << m.name << std::endl;
 m.health = 33;
}

int main(int argc, char* argv[]) {
 monster_t* p =
 new monster_t { "Pikachu", 42 };
 f(*p);
 return 0;
}

argc 1

argv a value

p 0x9010

frame of main

m 0x9010

frame of f

0x1000 33

Object-oriented programming in C++ References

Arrays and references

17

◼ You cannot create an array of references
• The compiler cannot easily check that the elements point to valid

objects

◼ But you can use a reference to an array
• An array declaration already declares a reference

void f(int (&tab)[3]) {
}

int main(int argc, char* argv[]) {
 int x[] = { 1, 2, 3 };
 f(x);
 return 0;
}

x is a reference to an array
(guaranteed to reference

a valid object)

tab is guaranteed to reference a
valid array of 3 elements

Object-oriented programming in C++ References

Fields and references

18

◼ The field of a class can be a reference
• Initialized in the constructor, never null

struct holder_t {
 int& val;

 holder_t(int& val) : val { val } { }
};

int main(int argc, char* argv[]) {
 int x = 42;
 holder_t h { x };
 h.val = 666;
 std::cout << x << std::endl; // 666
 return 0;
}

Object-oriented programming in C++ References

Fields and references

19

◼ But using a reference field can be dangerous

q->val references
unallocated memory inside

the frame of f
=> q->val has a random

value

struct holder_t {
 int& val;

 holder_t(int& val) : val { val } { }
};

holder_t* f(int x) {
 return new holder_t { x };
}

int main(int argc, char* argv[]) {
 holder_t* q = f(33);
 // bug: q->val references
 // an invalid memory location
 return 0;
}

Bad design because the
bug is hidden to the

user of holder_t in f

Object-oriented programming in C++ References

Key concepts

20

◼ A reference is an alias to an object
• Behaves as a pointer that necessarily points to a valid object
• Declared with type& var
• Assigned at creation, and cannot be change later

