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Description
WebAssembly [1], [2], or Wasm for short, has been created as a fast and secure-by-design answer to
the always increasing need for complex computation in browsers, such as 3D rendering, 3D model
parsing, gaming, hardware emulation or physics workloads (e.g. computational fluid dynamics) [3].
The success of WebAssembly as a portable Instruction Set Architecture (ISA) and binary format has
prompted its adoption in many applications besides browsers. Today, we can find WebAssembly in
smart contracts, embedded devices [4], in secure plugins [5], [6], in Function as a Service (FaaS) plat-
forms [7], or as a standalone runtime [8]. The latter has a huge impact on the cloud world and the
computing world in general. Some see in the flexibility of WebAssembly a universal binary format that
could be distributed seamlessly across operating systems and hardware architectures. It also appears
in various cloud-related projects and is considered as an alternative to Linux-based containers [9],
promising to be more portable, lightweight and secure.

WebAssembly claims strong security. By default, it provides sandboxing between different WebAssem-
bly instances and between WebAssembly and its host. It also enforces control-flow integrity, and pro-
tection against code reuse attacks. However, the security of WebAssembly has been challenged in sev-
eral works [10], [11]. First, WebAssembly offers weak protection against memory corruption attacks
compared to native binaries. Some vulnerabilities, such as stack-based buffer overflows, have been
present in native binaries for a long time, but are mitigated with mechanisms such as Stack Smashing
Protection (SSP). This protection was initially absent in WebAssembly. Second, differences in design
between WebAssembly and native binaries make the former vulnerable to attacks that are not possible
in native binaries. One example is the corruption of heap data using a stack-based buffer overflow.

Goals
The WebAssembly System Interfaces (WASI) [8],[12] that allow WebAssembly to be executed as a
standalone runtime are a set of APIs that are implemented by various runtimes. No security analysis
of the specification of the WASI APIs have been done yet, and no evaluation of its implementations
have been conducted. This project will focus on analysis the potential security risks of the existing
WASI APIs available in the WASI 0.2 relase and provide an assessment of its implementations.

For example, it has been found that the random WASI API is not implemented in the same way between
different runtimes, probably due to a lack of clarity of the corresponding standard. This study will
systematize the theorical analysis of the standards and try to find related weaknesses in the correp-
soinding implementations.

A proposition of steps for conducting the project would be:

1. Familiarization with the WebAssembly specification, the WASI APIs, existing tooling (compilers,
libraries, …) and previous academic work on WebAssembly security.
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2. Analyze the current WASI APIs specifications regarding their security and the capabilities they
offer.

3. Assess the runtimes on the weaknesses that are found.
4. Propose improvements on the affected WASI specifications, and in the affected runtimes. Write a

document detailing good security practices for designing future WASI APIs.
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