
Security analysis of standalone implementations of the
WebAssembly memory model

Supervisor
Quentin MICHAUD, PhD CIFRE student at Thales and Télécom SudParis¹

¹https://www.theses.fr/s374883

Contact: quentin.michaud@telecom-sudparis.eu

Description
WebAssembly [1], [2], or Wasm for short, has been created as a fast and secure-by-design answer to
the always increasing need for complex computation in browsers, such as 3D rendering, 3D model
parsing, gaming, hardware emulation or physics workloads (e.g. computational fluid dynamics) [3].
The success of WebAssembly as a portable Instruction Set Architecture (ISA) and binary format has
prompted its adoption in many applications besides browsers. Today, we can find WebAssembly in
smart contracts, embedded devices [4], in secure plugins [5], [6], in Function as a Service (FaaS) plat-
forms [7], or as a standalone runtime [8]. The latter has a huge impact on the cloud world and the
computing world in general. Some see in the flexibility of WebAssembly a universal binary format that
could be distributed seamlessly across operating systems and hardware architectures. It also appears
in various cloud-related projects and is considered as an alternative to Linux-based containers [9],
promising to be more portable, lightweight and secure.

WebAssembly claims strong security. By default, it provides sandboxing between different WebAssem-
bly instances and between WebAssembly and its host. It also enforces control-flow integrity, and pro-
tection against code reuse attacks. However, the security of WebAssembly has been challenged in sev-
eral works [10], [11]. First, WebAssembly offers weak protection against memory corruption attacks
compared to native binaries. Some vulnerabilities, such as stack-based buffer overflows, have been
present in native binaries for a long time, but are mitigated with mechanisms such as Stack Smashing
Protection (SSP). This protection was initially absent in WebAssembly. Second, differences in design
between WebAssembly and native binaries make the former vulnerable to attacks that are not possible
in native binaries. One example is the corruption of heap data using a stack-based buffer overflow.

Goals
The security of WebAssembly, and of standalone (WASI) WebAssembly in particular, is yet to have
been studied in depth. One research question is if the current runtime implementations garantee that
the WebAssembly specification detailed in the specification are correctly translated in the implemen-
tations. The investigation will focus on understanding where the different values from the different
memories in the WebAssembly virtual machine are stored on the host machine, and if this layout is
potentially vulnerable to memory vulnerabilities from within WebAssembly.

A proposition of steps for conducting the project would be:

1. Familiarization with the WebAssembly specification, its memory model, the WASI APIs, existing
tooling (compilers, libraries, …) and previous academic work on WebAssembly security.

2. Define precisely the goal and the scope of the analysis (which memories are studied, what are the
expectations on the implementations, what could be the potential vulnerabilities and their impact,
…)

1

https://www.theses.fr/s374883

3. Design an experimentation protocol that will allow to automatically assess the points that have
been defined in the previous step. This protocol must be working across various compilation tool-
chains and runtimes.

4. Implement a tool that operate the experimentation protocol and run it on target runtimes and tool-
chains.

5. Collect the results, propose interpretations, and possible remediations.

Bibliography
[1] A. Haas et al., “Bringing the web up to speed with WebAssembly,” in Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Implementation, in PLDI
2017. New York, NY, USA: Association for Computing Machinery, Jun. 2017, pp. 185–200. doi:
10.1145/3062341.3062363.

[2] A. Rossberg, “WebAssembly Core Specification,” Dec. 2019. [Online]. Available: https://www.w
3.org/TR/wasm-core-1/

[3] M. Sakuta, “Computational Fluid Dynamics simulation with Webassembly and Rust.” Accessed:
Apr. 17, 2024. [Online]. Available: https://github.com/msakuta/cfd-wasm

[4] R. Gurdeep Singh and C. Scholliers, “WARDuino: a dynamic WebAssembly virtual machine for
programming microcontrollers,” in Proceedings of the 16th ACM SIGPLAN International Confer-
ence on Managed Programming Languages and Runtimes, Athens Greece: ACM, Oct. 2019, pp.
27–36. doi: 10.1145/3357390.3361029.

[5] “Extism - make all software programmable. Extend from within. | Extism - make all software
programmable. Extend from within..” Accessed: Apr. 17, 2024. [Online]. Available: https://extism.
org/

[6] S. Narayan, T. Garfinkel, S. Lerner, H. Shacham, and D. Stefan, “Gobi: WebAssembly as a Practical
Path to Library Sandboxing.” Accessed: Apr. 17, 2024. [Online]. Available: http://arxiv.org/abs/
1912.02285

[7] V. Kjorveziroski and S. Filiposka, “WebAssembly Orchestration in the Context of Serverless
Computing,” Journal of Network and Systems Management, vol. 31, no. 3, p. 62–63, Jul. 2023, doi:
10.1007/s10922-023-09753-0.

[8] L. Clark, “Standardizing WASI: A system interface to run WebAssembly outside the web – Mozilla
Hacks - the Web developer blog.” Accessed: Apr. 17, 2024. [Online]. Available: https://hacks.
mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface

[9] “wasmCloud.” Accessed: Apr. 17, 2024. [Online]. Available: https://wasmcloud.com/

[10] D. Lehmann, J. Kinder, and M. Pradel, “Everything Old is New Again: Binary Security of We-
bAssembly,” 2020, pp. 217–234. Accessed: Sep. 14, 2023. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity20/presentation/lehmann

[11] Q. Stiévenart, C. De Roover, and M. Ghafari, “Security risks of porting C programs to we-
bassembly,” in Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, in SAC
'22. New York, NY, USA: Association for Computing Machinery, May 2022, pp. 1713–1722. doi:
10.1145/3477314.3507308.

2

https://doi.org/10.1145/3062341.3062363
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://github.com/msakuta/cfd-wasm
https://doi.org/10.1145/3357390.3361029
https://extism.org/
https://extism.org/
http://arxiv.org/abs/1912.02285
http://arxiv.org/abs/1912.02285
https://doi.org/10.1007/s10922-023-09753-0
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface
https://wasmcloud.com/
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://doi.org/10.1145/3477314.3507308

	Supervisor
	Description
	Goals
	Bibliography

