<\TUT

Binary level code analysis:
Side channel, Fault injection &
Library stubs

Frédéric Recoules

Yanis Sellami

Sébastien Bardin

&0
18
12
43
OF
41

o
F
F

b Al e

e o

~ s
»

W00 AAD RO
D = 00 A e O

WO kD ®N
o D W

A need for binary level analysis

SOURCE BINARY
CODE COMPILER CODE COMPUTER

COTS

No source code

What You See

Is Not What You Execute
| Malware |

il

LEGACY (ODE

VMProtect

\

g //

\

N\

“IHEMIDA

BINSEC in a nutshell (since 2012)

Security critical components

binary lifting, Fault injection

gﬁq zg IR, CFG, call graph, Vulnerability .
) symbolic execution, Y - Side channel attack
Yices2 . -

static analysis, .. - Attacker model

Symbolic engine Supply chain

- Advanced fuzzing

Bug finding)
- Test case generation

Malware comprehension

\ UNISIM SN - Copture The Flag Z

f \\’/ Virtual - Deobuscation e

Engineerin
\{\g 2 Platformfor J 2 - Decompilation

Research project topics

s Side Channel Attacks = Fault Injection Attacks

= Leakages. Timing information, power = Perturbations. High voltage, extreme
consumption, electromagnetic leaks and temperature, electromagnetic pulses,
sound, etc. laser beam, etc.

s Constant time verification. IEEE S&P 2020,
NDSS 2021, CCS 2023 v

= Goal. Handling of new threat models (e.g.
Power attacks, Ciphertext attacks)

JE\ o ©

5 ! ,'C-./ »la,.
b - .
™ Wsgn , 30 ¢ ¢ & ‘
:; High-Voltage

lon-Beams

Electromagnetic

Fields

n Library stubs
= Adversarial symbolic execution.

o _ . _ ESOP 2023 v
m Missing code. Dynamically linked library = Goal. Handling of new threat models

(e.g.libc), syscalls, etc. (e.g. RowHammer) or improvement of the
= High-level concepts. File system, string, etc. analysis scalability

m Goal.Improvement of the expressiveness,
the genericity or the automation of the
@ stubbing mechanism

