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Binary level code analysis:
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Library stubs
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A need for binary level analysis
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BINSEC in a nutshell (since 2012)

Security critical components

binary lifting,  Fault injection

gﬁq zg IR, CFG, call graph, Vulnerability .
) symbolic execution, Y - Side channel attack
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static analysis, .. - Attacker model

Symbolic engine Supply chain

- Advanced fuzzing

Bug finding )
- Test case generation

Malware comprehension
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Research project topics

s Side Channel Attacks = Fault Injection Attacks

= Leakages. Timing information, power = Perturbations. High voltage, extreme
consumption, electromagnetic leaks and temperature, electromagnetic pulses,
sound, etc. laser beam, etc.

s Constant time verification. IEEE S&P 2020,
NDSS 2021, CCS 2023 v

= Goal. Handling of new threat models (e.g.
Power attacks, Ciphertext attacks )
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n Library stubs
= Adversarial symbolic execution.

o _ . _ ESOP 2023 v
m  Missing code. Dynamically linked library = Goal. Handling of new threat models

(e.g.libc), syscalls, etc. (e.g. RowHammer) or improvement of the
= High-level concepts. File system, string, etc. analysis scalability

m  Goal.Improvement of the expressiveness,
the genericity or the automation of the
@ stubbing mechanism




