
Observability of innovative sandboxed container
technology: Detection and monitoring of WebAssembly

Workloads

Supervisors
Dhouha AYED, PhD, security architect at Thales

Quentin MICHAUD, PhD CIFRE student at Thales and Télécom SudParis¹

Contact:
• dhouha.ayed@thalesgroup.com
• quentin.michaud@thalesgroup.com

Description
WebAssembly [1], [2], or Wasm for short, has been created as a fast and secure-by-design answer to
the always increasing need for complex computation in browsers, such as 3D rendering, 3D model
parsing, gaming, hardware emulation or physics workloads (e.g. computational fluid dynamics) [3].
The success of WebAssembly as a portable Instruction Set Architecture (ISA) and binary format has
prompted its adoption in many applications besides browsers. Today, we can find WebAssembly in
smart contracts, embedded devices [4], in secure plugins [5], [6], in Function as a Service (FaaS)
platforms [7], or as a standalone runtime [8]. The latter has a huge impact on the cloud world and the
computing world in general. Some see in the flexibility of WebAssembly a universal binary format that
could be distributed seamlessly across operating systems and hardware architectures. It also appears
in various cloud-related projects and is considered as an alternative to Linux-based containers [9],
promising to be more portable, lightweight and secure.

While WebAssembly provides sandboxing and performance benefits, its standalone use cases in cloud,
edge computing, and embedded systems raise new challenges concerning security and observability.
The cloud-native community has a strong experience of observing the behavior of containers. With
several methods such as eBPF² [10], [11], it is possible to collect performance metrics, uncover bugs,
but also to detect both successful and unsuccessful attacks. While WebAssembly is reputed more secure
than containers, it can still be impacted by attacks [12], [13].

Goals
The main goal of this project is to investigate techniques for detecting, analyzing, and monitoring
WebAssembly workloads in real-time. The candidate will study the security landscape of standalone
(i.e. using WASI [14]) WebAssembly workloads, analyze vulnerability types and potential attacks, and
explore tools and methods for collecting relevant metrics and identifying workload characteristics and
anomalies. The candidate will analyze and evaluate various approaches to monitor wasm workloads:

• Adding monitoring hooks to a programmable Wasm runtime (example: Wasmtime)

• Add instrumentation at the Wasm binary level to generate precise events or counters if needed

• Implement monitoring techniques leveraging Linux eBPF technology to provide complementary
system-level observability without modifying the Wasm runtime or binaries

A proposition of steps for conducting this project would be:

¹https://www.theses.fr/s374883
²https://ebpf.io/

1

https://www.theses.fr/s374883
https://ebpf.io/

1. Conduct a comprehensive analysis of known vulnerabilities and attack vectors targeting We-
bAssembly modules and runtimes, especially in standalone contexts. Investigate sandbox escape
possibilities, malicious bytecode patterns, side-channel attacks, runtime exploits, and risks related
to import/export interfaces.

2. Review existing techniques to monitor WebAssembly workloads, including runtime hooks, binary
instrumentation tools (e.g., Binaryen³, WABT⁴), and observability frameworks (e.g., OpenTeleme-
try⁵, Prometheus⁶) and identify gaps in current approaches where system-level monitoring can add
value.

3. Explore the use of extended Berkeley Packet Filter (eBPF) technology to trace system calls, resource
utilization (CPU, memory, I/O), and network interactions of Wasm runtimes. Develop or adapt eBPF
scripts to extract operational metrics and anomalous behavior indicators without modifying Wasm
code or runtime internals.

4. Evaluate how to integrate the collected metrics into observability pipelines (e.g., Prometheus
exporters, Grafana dashboards) for real-time monitoring.

5. Test the monitoring solution on typical standalone Wasm workloads and demonstrate detection
capabilities for security-relevant events.

6. Produce a comprehensive report summarizing the security assessment and monitoring strategy,
providing recommendations for implementing ongoing security monitoring and potential runtime
hardening measures.

Bibliography
[1] A. Haas et al., “Bringing the web up to speed with WebAssembly,” in Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Implementation, in PLDI
2017. New York, NY, USA: Association for Computing Machinery, Jun. 2017, pp. 185–200. doi:
10.1145/3062341.3062363.

[2] A. Rossberg, “WebAssembly Core Specification,” Dec. 2019. [Online]. Available: https://www.w
3.org/TR/wasm-core-1/

[3] M. Sakuta, “Computational Fluid Dynamics simulation with Webassembly and Rust.” Accessed:
Apr. 17, 2024. [Online]. Available: https://github.com/msakuta/cfd-wasm

[4] R. Gurdeep Singh and C. Scholliers, “WARDuino: a dynamic WebAssembly virtual machine for
programming microcontrollers,” in Proceedings of the 16th ACM SIGPLAN International Confer"
ence on Managed Programming Languages and Runtimes, Athens Greece: ACM, Oct. 2019, pp.
27–36. doi: 10.1145/3357390.3361029.

[5] “Extism - make all software programmable. Extend from within. | Extism - make all software
programmable. Extend from within..” Accessed: Apr. 17, 2024. [Online]. Available: https://extism.
org/

[6] S. Narayan, T. Garfinkel, S. Lerner, H. Shacham, and D. Stefan, “Gobi: WebAssembly as a Practical
Path to Library Sandboxing.” Accessed: Apr. 17, 2024. [Online]. Available: http://arxiv.org/abs/
1912.02285

³https://github.com/WebAssembly/binaryen
⁴https://github.com/WebAssembly/wabt
⁵https://opentelemetry.io/
⁶https://prometheus.io/

2

https://doi.org/10.1145/3062341.3062363
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://github.com/msakuta/cfd-wasm
https://doi.org/10.1145/3357390.3361029
https://extism.org/
https://extism.org/
http://arxiv.org/abs/1912.02285
http://arxiv.org/abs/1912.02285
https://github.com/WebAssembly/binaryen
https://github.com/WebAssembly/wabt
https://opentelemetry.io/
https://prometheus.io/

[7] V. Kjorveziroski and S. Filiposka, “WebAssembly Orchestration in the Context of Serverless
Computing,” Journal of Network and Systems Management, vol. 31, no. 3, p. 62, Jul. 2023, doi:
10.1007/s10922-023-09753-0.

[8] L. Clark, “Standardizing WASI: A system interface to run WebAssembly outside the web – Mozilla
Hacks - the Web developer blog.” Accessed: Apr. 17, 2024. [Online]. Available: https://hacks.
mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface

[9] “wasmCloud.” Accessed: Apr. 17, 2024. [Online]. Available: https://wasmcloud.com/

[10] D. Soldani et al., “eBPF: A New Approach to Cloud-Native Observability, Networking and
Security for Current (5G) and Future Mobile Networks (6G and Beyond),” IEEE Access, vol. 11,
no. , pp. 57174–57202, 2023, doi: 10.1109/ACCESS.2023.3281480.

[11] C. Cassagnes, L. Trestioreanu, C. Joly, and R. State, “The rise of eBPF for non-intrusive
performance monitoring,” in NOMS 2020 " 2020 IEEE/IFIP Network Operations and Management
Symposium, 2020, pp. 1–7. doi: 10.1109/NOMS47738.2020.9110434.

[12] D. Lehmann, J. Kinder, and M. Pradel, “Everything Old is New Again: Binary Security of
WebAssembly,” 2020, pp. 217–234. Accessed: Sep. 14, 2023. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity20/presentation/lehmann

[13] Q. Stiévenart, C. De Roover, and M. Ghafari, “Security risks of porting C programs to
webassembly,” in Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, in SAC
'22. New York, NY, USA: Association for Computing Machinery, May 2022, pp. 1713–1722. doi:
10.1145/3477314.3507308.

[14] “Introduction | WASI.dev.” Accessed: Sep. 24, 2024. [Online]. Available: https://wasi.dev/

3

https://doi.org/10.1007/s10922-023-09753-0
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface
https://wasmcloud.com/
https://doi.org/10.1109/ACCESS.2023.3281480
https://doi.org/10.1109/NOMS47738.2020.9110434
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://doi.org/10.1145/3477314.3507308
https://wasi.dev/

	Supervisors
	Description
	Goals
	Bibliography

