ZERO-KNOWLEDGE PROOFS OF SOFTWARE VULNERABILITIES
OR
How TO PROVE I FOUND A VULNERABILITY WITHOUT REVEALING IT
DANIEL AUGOT
LIX (CRYPTOGRAPHY TEAM AT ECOLE POLYTECHNIQUE)

1 Disclosure of vulnerabilities and zero-knowledge

In the case of a bug bounty, the white hat programmer who discovers an attack
and discloses it risks gaining no benefit from the bug bounty unless they make
it public. But this would endanger the target.

Zero-knowledge proofs are an advanced cryptographic concept that allows
one to prove that a statement, fact, claim, or computation result is true, without
revealing any of the elements that make it true. In the context of bug bounties,
the statement is “I know a software vulnerability in such and such software,
here are its effects.” A zero-knowledge proof of this claim will be made, demon-
strating the effect without revealing the vulnerability.

The underlying technology is that of ZK-snarks, which have recently made
significant progress in maturity and speed to reach this level of abstraction,
generality, and performance. This is due to the enthusiasm of the blockchain
world for these technologies, which are heavily funded and have seen an explosion
of both scientific and software developments (references and pointers here). This
internship does not deal with the cryptographic internals of snarks.

Snarks use advanced cryptography (elliptic curves, error-correcting codes,
etc.), but software infrastructures like RISC-0 allow non-specialist programmers
to use these technologies.

2 RISC-0

The RISC-0 software provides a host virtual machine that supports the exe-
cution of a guest RISC-V binary in ELF format. The RISC-0 software allows
to

1. provide a cryptographic proof of the correct execution of the binary. This
proof can then be verified by a cryptographic program called a verifier.
This verification requires much fewer resources than direct execution.
Anyone can verify it.

2. hide (blind) certain elements of the execution, which thus cannot be de-
duced from the proof.

3 CHESS Example

The chess example (github) below clearly shows what happens. Here is the
guest program:


https://zkp.science/
https://github.com/risc0/risc0/tree/main/examples/chess

use chess_core::Inputs;
use riscO_zkvm::guest::env;
use shakmaty::{CastlingMode, Chess,
FromSetup, Move, Position,
Setup, fen::Fen, san::San};
fn main() {
let inputs: Inputs = env::read();
let mv: String = inputs.mv;
let initial_state: String = inputs.board;
env::commit (&initial_state);
let setup = Setup::from(Fen::from_ascii(initial_state.as_bytes()).unwrap());
let pos = Chess::from_setup(setup, CastlingMode::Standard) .unwrapQ) ;
let mv: Move = mv.parse::<San>().unwrap().to_move(&pos) .unwrap();
let pos = pos.play(&mv).unwrap();
assert! (pos.is_checkmate());

}

Note that this is a standard Rust program.

We see the call 1let inputs: Inputs = env::read(); which defines the
state of the chessboard before checkmate, and the sequence of moves to play
mv. This program is executed as a guest by the RISCO VM, which provides its
inputs (initial_state, which will be public, and mv, which will be private).

What is public is determined by the line env: :commit(&initial_state);
which allows writing to an execution journal. Only what is written in the journal
will become public; all other data will remain hidden by default.

Then, after execution, a receipt is written (by the host), which contains
the journal (thus initial_state) and the zero-knowledge “snark” proof. This
proof can then be verified a posteriori by a verifier program (also provided by
RISC-0).

In this example, we see that RISC-0 provides a whole framework and APIs
that allow the programmer to ignore the underlying cryptographic techniques,
and standard rust libraries like chess can be used with no effort.

4 Proof of smart contract vulnerabilities

RISC-0 has been used to prove the existence of vulnerabilities in Ethereum smart
contracts. A smart contract is a program recorded on a blockchain, which can
be called by an Ethereum transaction. These programs can have vulnerabilities
that certain transactions can trigger.

With RISCO, it has been demonstrated that it is possible to prove the exe-
cution of a smart contract to an undesirable state, following a transaction and
another attacking smart contract. The zero-knowledge property allows proving
that this state is reached without revealing the transaction that triggers the
attack.

See (this blog post| and the github repository. In this example, a reentrancy
bug is exploited.


https://risczero.com/blog/zkpoex
https://github.com/zkoranges/zkPoEX

5 Internship goal: “de-blockchainize” the sub-
ject, study feasibility and performance

Here, the goal is to create an example of a vulnerability proof for a much more
standard, non-blockchain context.

The vulnerability will be proven on a “toy” example, chosen by the intern,
but must remain simple. For example, initially, one could draw inspiration from
this blog post, which describes a buffer overflow in Rust, the native language
of RISC-0.

A second step will be to produce a vulnerability proof for an ELF program
written in a language other than Rust, such as C. Then, more realistic programs
will be attempted. This idea of cryptographic vulnerability proofs has led to
publications [1}, 3 2], but it seems that RISC-0 is more programmer friendly.

References

[1] Santiago Cuéllar, Bill Harris, James Parker, Stuart Pernsteiner, and Eran
Tromer. “Cheesecloth: Zero-Knowledge Proofs of Real World Vulnerabili-
ties”. In: 82nd USENIX Security Symposium, USENIX Security 2023, Ana-
heim, CA, USA, August 9-11, 2023. Ed. by Joseph A. Calandrino and
Carmela Troncoso. USENIX Association, 2023, pp. 6525-6540. URL: https:
/ /www . usenix . org/ conference /usenixsecurity23/presentation /
cuellar.

[2] Santiago Cuéllar Gempeler, Bill Harris, James Parker, Stuart Pernsteiner,
Tan Sweet, and Eran Tromer. “Cheesecloth: Zero-Knowledge Proofs of Real-
World Vulnerabilities”. In: ACM Trans. Priv. Sec. (4 Sept. 2025), p. 35.

[3] Xueyan Tang, Lingzhi Shi, Xun Wang, Kyle Charbonnet, Shixiang Tang,
and Shixiao Sun. Zero-Knowledge Proof Vulnerability Analysis and Security
Auditing. Cryptology ePrint Archive, Paper 2024/514. 2024. URL: https:
//eprint.iacr.org/2024/514.


https://tgrez.github.io/posts/2022-06-19-buffer-overflow-in-rust.html
https://www.usenix.org/conference/usenixsecurity23/presentation/cuellar
https://www.usenix.org/conference/usenixsecurity23/presentation/cuellar
https://www.usenix.org/conference/usenixsecurity23/presentation/cuellar
https://eprint.iacr.org/2024/514
https://eprint.iacr.org/2024/514

	Disclosure of vulnerabilities and zero-knowledge
	RISC-0
	CHESS Example
	Proof of smart contract vulnerabilities
	Internship goal: ``de-blockchainize'' the subject, study feasibility and performance

